Advertisement

Russian Journal of Non-Ferrous Metals

, Volume 58, Issue 4, pp 389–395 | Cite as

Anisotropy of mechanical properties of products manufactured using selective laser melting of powdered materials

  • A. A. PopovichEmail author
  • V. Sh. Sufiiarov
  • E. V. Borisov
  • I. A. Polozov
  • D. V. Masaylo
  • A. V. Grigoriev
Theory and Processes of Forming and Sintering of Powder Materials

Abstract

Causes of the appearance of anisotropy of properties in products manufactured according to the technology of selective laser melting of metallic powder materials are investigated. The results of an evaluation of mechanical properties of the samples made of Ti–6Al–4V and VT6 titanium-based alloys and Inconel 718 refractory nickel alloy in various directions are presented. The dependence of their mechanical properties on the orientation of billets relative to the working platform of the installation is presented. An analysis of microslices of the Ti–6Al–4V alloy showed that the direction of the granular structure for a rectangular sample corresponds to the growth direction, while, when manufacturing thin elements of a net construction, other thermal processes flow due to their smaller cross section, which affects the crystallization conditions and microstructure being formed. Grain directions and shapes change depending on the slope angle of the element of the net structure.

Keywords

additive manufacturing selective laser melting powder metallurgy titanium alloys nickel alloys additive technologies anisotropy mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zlenko, M.A., Popovich, A.A., and Mutylina, I.N., Additivnye tekhnologii v mashinostroenii (Additive Technologies in Mechanical Engineering), St. Petersburg: St. Petersburg Politekh. Univ., 2013.Google Scholar
  2. 2.
    Simonelli, M., Tse, Y.Y., and Tuck, C., Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V, Mater. Sci. Eng. A, 2014, vol. 616, pp. 1–11.CrossRefGoogle Scholar
  3. 3.
    Kunze, K., Etter, T., Grasslin, J., and Shklover, V., Texture, anisotropy in microstructure and mechanical properties of IN-738LC alloy processed by selective laser melting (SLM), Mater. Sci. Eng. A, 2015, vol. 620, pp. 213–222.CrossRefGoogle Scholar
  4. 4.
    Thijs, L., Kempen, K., Kruth, J.P., and Van Humbeeck, J., Finestructured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Mater., 2013, vol. 61, no. 5, pp. 1809–1819.CrossRefGoogle Scholar
  5. 5.
    Thijs, L., Sistiaga, M.L.M., Wauthle, R., Xie, Q., Kruth, J.P., and Van Humbeeck, J., Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum, Acta Mater., 2013, vol. 61, no. 12, pp. 4657–4668.CrossRefGoogle Scholar
  6. 6.
    Mertens, A., Reginster, S., Paydas, H., Contrepois, Q., Dormal, T., Lemaire, O., and Lecomte-Beckers, J., Mechanical properties of alloy Ti–6Al–4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures, Powder Metall., 2014, vol. 57, no. 3, pp. 184–189.CrossRefGoogle Scholar
  7. 7.
    Carter, L.N., Martin, C., Withers, P.J., and Attallah, M.M., The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy, J. Alloys Compd., 2014, vol. 615, pp. 338–347.CrossRefGoogle Scholar
  8. 8.
    Song, B., Dong, S., Coddet, P., Liao, H., and Coddet, C., Fabrication of NiCr alloy parts by selective laser melting: columnar microstructure and anisotropic mechanical behavior, Mater. Des., 2014, vol. 53, pp. 1–7.CrossRefGoogle Scholar
  9. 9.
    Vrancken, B., Thijs, L., Kruth, J.P., and Van Humbeeck, J., Microstructure and mechanical properties of a novel titanium metallic composite by selective laser melting, Acta Mater., 2014, vol. 68, pp. 150–158.CrossRefGoogle Scholar
  10. 10.
    Dadbakhsh, S., Vrancken, B., Kruth, J.P., Luyten, J., and Van Humbeeck, J., Texture and anisotropy in selective laser melting of NiTi alloy, Mater. Sci. Eng. A, 2016, vol. 650, pp. 225–232.CrossRefGoogle Scholar
  11. 11.
    Popovich, A.A., Sufiiarov, V.Sh., Borisov, E.V., and Polozov, I.A., Microstructure and mechanical properties of Inconel 718 produced by SLM and subsequent heat treatment, Key Eng. Mater., 2015, vols. 651–653, pp. 665–670.CrossRefGoogle Scholar
  12. 12.
    Wauthle, R., Vrancken, B., Beynaerts, B., Jorissen, K., Schrooten, J., Kruth, J.P., and Van Humbeeck, J., Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures, Add. Manuf., 2015, vol. 5, pp. 77–84.Google Scholar
  13. 13.
    Frazier, W.E., Metal additive manufacturing: a review, J. Mater. Eng. Perform., 2014, vol. 23, no. 6, pp. 1917–1928.CrossRefGoogle Scholar
  14. 14.
    Yadroitsev, I., Bertrand, P., Antonenkova, G., Grigoriev, S., and Smurov, I., Use of track/layer morphology to develop functional parts by selective laser melting, J. Laser Appl., 2013, vol. 25, no. 5, p. 052003.CrossRefGoogle Scholar
  15. 15.
    Wu, M.W., Lai, P.H., and Chen, J.K., Anisotropy in the impact toughness of selective laser melted Ti–6Al–4V alloy, Mater. Sci. Eng. A, 2016, vol. 650, pp. 295–299.CrossRefGoogle Scholar
  16. 16.
    Chlebus, E., Kuznicka, B., Kurzynowski, T., and Dybala, B., Microstructure and mechanical behaviour of ti-6al-7nb alloy produced by selective laser melting, Mater. Character., 2011, vol. 62, no. 5, pp. 488–495.CrossRefGoogle Scholar
  17. 17.
    Vilaro, T., Colin, C., and Bartout, J.D., As-fabricated and heat-treated microstructures of the Ti–6Al–4V alloy processed by selective laser melting, Metal. Mater. Trans. A, 2011, vol. 42, no. 10, pp. 3190–3199.CrossRefGoogle Scholar
  18. 18.
    Ahuja, B., Schaub, A., Karg, M., Lechner, M., Merklein, M., and Schmidt, M., Developing LBM process parameters for Ti–6Al–4V thin wall structures and determining the corresponding mechanical characteristics, Phys. Proc., 2014, vol. 56, pp. 90–98.CrossRefGoogle Scholar
  19. 19.
    Qiu, C., Adkins, N.J.E., and Attallah, M.M., Microstructure and tensile properties of selectively lasermelted and of HIPed laser-melted Ti–6Al–4V, Mater. Sci. Eng. A, 2013, vol. 578, pp. 230–239.CrossRefGoogle Scholar
  20. 20.
    ASTM F2924—Standard Specification for Additive Manufacturing Titanium–6 Aluminum–4 Vanadium with Powder Bed Fusion.Google Scholar
  21. 21.
    ASTM F3055 Additive Manufacturing Nickel Alloy (UNS N07718) with Powder Bed Fusion.Google Scholar
  22. 22.
    Popovich, A., Sufiiarov, V., Borisov, E., and Polozov, I., Microstructure and mechanical properties of Ti–6Al–4V manufactured by SLM, Key Eng. Mater., 2015, vols. 651–653, pp. 677–682.CrossRefGoogle Scholar
  23. 23.
    Cain, V., Thijs, L., Van Humbeeck, J., Van Hooreweder, B., and Knutsen, R., Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting, Add. Manuf., 2015, vol. 5, pp. 68–76.Google Scholar
  24. 24.
    Rafi, H.K., Starr, T.L., and Stucker, B.E., A comparison of the tensile, fatigue, and fracture behavior of Ti–6Al–4V and 15-5 PH stainless steel parts made by selective laser melting, Int. J. Adv. Manuf. Technol., 2013, vol. 69, nos. 5–8, pp. 1299–1309.CrossRefGoogle Scholar
  25. 25.
    Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K., and Schrage, J., Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting, J. Laser Appl., 2014, vol. 26, no. 1, p. 012004.CrossRefGoogle Scholar
  26. 26.
    Sufiiarov, V.Sh., Borisov, E.V., and Polozov, I.A., Selective laser melting of the Inconel 718 nickel superalloy, Appl. Mech. Mater., 2015, vol. 698, pp. 333–338.CrossRefGoogle Scholar
  27. 27.
    Sufiiarov, V.Sh., Popovich, A.A., Borisov, E.V., and Polozov, I.A., Layer thickness influence on the Inconel 718 alloy microstructure and properties under selective laser melting, Tsvetn. Met., 2016, no. 1, pp. 81–86.CrossRefGoogle Scholar
  28. 28.
    Collins, P.C., Welk, B., Searles, T., Tiley, J., Rußs, J.C., and Fraser, H.L., Development of methods for the quantification of microstructural features in a + ß-processed a/ß titanium alloys, Mater. Sci. Eng. A, 2009, vol. 508, no. 1, pp. 174–182.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. A. Popovich
    • 1
    Email author
  • V. Sh. Sufiiarov
    • 1
  • E. V. Borisov
    • 1
  • I. A. Polozov
    • 1
  • D. V. Masaylo
    • 1
  • A. V. Grigoriev
    • 1
    • 2
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.OAO KlimivSt. PetersburgRussia

Personalised recommendations