Advertisement

Russian Journal of Non-Ferrous Metals

, Volume 58, Issue 4, pp 427–433 | Cite as

Ultrasonic effect on the penetration of the metallic melt into submicron particles and their agglomerates

  • O. B. Kudryashova
  • D. G. Eskin
  • A. P. Khrustalyov
  • S. A. Vorozhtsov
Refractory, Ceramic, and Composite Materials
  • 32 Downloads

Abstract

Deagglomeration and wetting of submicron particles in a metal melt under ultrasonic exposure are considered based on the theory of acoustic cavitation and capillary phenomena. Basic dependences linking the exposure time with physicochemical properties of the particles and the melt, as well as with acoustic radiation characteristics, are found. The experimental and calculated times of ultrasonic treatment of the aluminum melt containing submicron aluminum oxide particles are compared, and a satisfactory agreement of results is found.

Keywords

ultrasonic treatment metal melt nanoparticles impregnation cavitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krushenko, G.G., Tools and technologies to increase the content of nanopowders in modifying aluminum rods, Nanotekhnika, 2011, no. 3, pp. 55–61.Google Scholar
  2. 2.
    Yang, Y. and Li, X., Ultrasonic cavitation based nanomanufacturing of bulk aluminum matrix nanocomposites, J. Manufact. Sci. Eng., 2007, vol. 129, pp. 497–501.CrossRefGoogle Scholar
  3. 3.
    Konovalov, E.G. and Germanovich, I.N., Ultrasonic Capillary Effect, Dokl. Akad. Nauk BSSR, 1962, vol. 6, no. 8, pp. 492–493.Google Scholar
  4. 4.
    Rozin, Yu.P., Tihonova, V.S., and Kostyuchek, M.N., Revisiting anomalously high constant pressure in the immediate vicinity of the radiant, Ukr. Fiz. Zh., 1975, no. 2, pp. 214–220.Google Scholar
  5. 5.
    Prohorenko, P.P., Dezhkunov, N.V., and Konovalov, G.E., Ul’trazvukovoj kapillyarnyj effekt (Ultrasonic Capillary Effect), Minsk: Nauka i Tekhnika, 1981.Google Scholar
  6. 6.
    Ignat’ev, I.V., Pastuhov, E.A., and Ignat’eva, E.V., Principal distinction of the methods of low-frequency and ultrasonic effects on melts, Russ. J. Non-Ferrous Met., 2014, vol. 55, no. 6, pp. 509–512.CrossRefGoogle Scholar
  7. 7.
    Vorozhtsov, S.A., Eskin, D.G., Tamayo, J., Vorozhtsov, A.B., Promakhov, V.V., Averin, A.A., and Khrustalyov, A.P., The application of external fields to the manufacturing of novel dense composite master alloys and aluminum-based nanocomposites, Metal. Mater. Trans. A, 2015, vol. 46A, no. 4, pp. 2870–2875.CrossRefGoogle Scholar
  8. 8.
    Eskin, G.I. and Eskin, D.G., Ultrasonic Treatment of Light Alloy Melts, Boca Raton: CRC, 2014.CrossRefGoogle Scholar
  9. 9.
    Roldugin, V.I., Fizikohimiya poverhnosti (Physical chemistry of surfaces), Dolgoprudnyi: Intellekt, 2011.Google Scholar
  10. 10.
    Sirotyuk, M.G., Moshchnye ul’trazvukovye polya (Powerful ultrasonic fields), Rozenberg, L.D., Ed., Moscow: Media, 2007.Google Scholar
  11. 11.
    Tzanakis, I., Xu, W.W., Lebon, G.S.B., Eskin, D.G., Pericleous, K., and Lee, P.D., In situ synchrotron radiography and spectrum analysis of transient cavitation bubbles in molten aluminium alloy, Phys. Proc., 2015, no. 70, pp. 841–845.CrossRefGoogle Scholar
  12. 12.
    Kitaigorodskii, Yu.I. and Drozhalova, V.I., Calculation of height and fluid rise velocity in capillaries when exposed to ultrasonic vibrations, in: Primenenie ul’trazvuka v metallurgii (Application of Ultrasound in Metallurgy), Moscow: Metallurgiya, 1977, pp. 12–16.Google Scholar
  13. 13.
    Bronin, F.A., Estimation of some characteristics of dynamics of cavitation cavities in the sound field, Trudy MISIS, 1970, pp. 53–57.Google Scholar
  14. 14.
    Vorozhtsov, S., Zhukov, I., Vorozhtsov, A., Zhukov, A., Eskin, D., and Kvetinskaya, A., Synthesis of microand nanoparticles of metal oxides and their application for reinforcement of Al-based alloys, Mater. Sci. Eng., 2015, vol. 2015, pp. 1–6. http://dx.doi.org/. doi 10.1155/2015/718207Google Scholar
  15. 15.
    Tzanakis, I., Xu, W.W., Eskin, D.G., Lee, P.D., and Kotsovinos, N., In situ observation and analysis of ultrasonic capillary effect in molten aluminium, Ultrason. Sonochem., 2015, no. 27, pp. 72–80.CrossRefGoogle Scholar
  16. 16.
    Timoshkin, A.V., Integrated Refining and Modification of Silumins by High-Speed Inject Melt Treatment, Cand. Sci. (Eng.) Dissertation, Moscow: MATI-RSTU, 2003.Google Scholar
  17. 17.
    Eskin, G.I., Revisiting introducing conditions of a nonwettable infusible phase into the aluminum melt by ultrasound, Tekhnol. Legk. Splav., 1974, no. 11, pp. 21–25.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • O. B. Kudryashova
    • 1
  • D. G. Eskin
    • 2
    • 3
  • A. P. Khrustalyov
    • 2
  • S. A. Vorozhtsov
    • 2
  1. 1.Institute for Problems of Chemicoenergetical Technologies, Siberian BranchRussian Academy of SciencesBiiskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.Brunel UniversityUxbridgeUK

Personalised recommendations