Advertisement

Russian Journal of Non-Ferrous Metals

, Volume 56, Issue 4, pp 365–371 | Cite as

Dissolution regularities of smithsonite in methane sulfonic acid

  • Qicheng Feng
  • Shuming WenEmail author
  • Wenjuan Zhao
  • Xv Bai
  • Yu Chen
Mineral Processing of Nonferrous Metals

Abstract

Methane sulfonic acid (MSA) was proposed as a clean and efficient leaching agent to extract zinc from smithsonite. Experimental variables such as acid concentration, reaction temperature, particle size, and stirring speed were considered. Results indicated that zinc leaching fraction increased with increased MSA concentration, reaction temperature, stirring speed, and decreasing particle size. The dissolution kinetics of smithsonite in MSA solutions was investigated with respect to the corresponding experimental data and kinetics was analyzed using a new variant of the shrinking core model, in which both interfacial transfer and diffusion across the product layer affected the dissolution rate. The apparent activation energy of this process was determined to be 32.66 kJ/mol, and a semi-empirical rate equation was obtained to describe the process.

Keywords

smithsonite methane sulfonic acid dissolution shrinking core model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ejtemaei, M., Gharabaghi, M., and Irannajad, M., Adv. Colloid Interface Sci., 2014, vol. 206, pp. 68–78.CrossRefGoogle Scholar
  2. 2.
    Irannajad, M., Meshkini, M., and Azadmehr, A.R., Physicochem. Probl. Miner. Process., 2013, vol. 49, pp. 547–555.Google Scholar
  3. 3.
    Zhao, Y.C. and Stanforth, R., Hydrometallurgy, 2000, vol. 56, pp. 237–249.CrossRefGoogle Scholar
  4. 4.
    Li, C.X., Xu, H.S., Deng, Z.G., Li, X.B., Li, M.T., and Wei, C., Trans. Nonferr. Met. Soc. China, 2010, vol. 20, pp. 918–923.CrossRefGoogle Scholar
  5. 5.
    Mehdilo, A., Irannajad, M., and Zarei, H., Sep. Sci. Technol., 2014, vol. 49, pp. 445–457.CrossRefGoogle Scholar
  6. 6.
    Hosseini, S.H. and Forssberg, E., Miner. Metall. Process, 2006, vol. 23, pp. 87–96.Google Scholar
  7. 7.
    Dou, A.C., Yang, T.Z., Yang, J.X., Wu, J.H., and Wang, A., Trans. Nonferr. Met. Soc. China, 2011, vol. 21, pp. 2548–2553.CrossRefGoogle Scholar
  8. 8.
    Espiari, S., Rashchi, F., and Sadrnezhaad, S.K., Hydrometallurgy, 2006, vol. 82, pp. 54–62.CrossRefGoogle Scholar
  9. 9.
    Kashani, A.H.N. and Rashchi, F., Miner. Eng., 2008, vol. 21, pp. 967–972.CrossRefGoogle Scholar
  10. 10.
    Shi, Q., Zhang, G.F., Feng, Q.M., and Deng, H., Int. J. Miner. Process, 2013, vol. 119, pp. 34–39.CrossRefGoogle Scholar
  11. 11.
    Dhawan, N., Safarzadeh, M.S., and Birinci, M., Russ. J. Non-Ferr. Met., 2011, vol. 52, pp. 209–216.CrossRefGoogle Scholar
  12. 12.
    He, S.M., Wang, J.K., and Yan, J.F., Hydrometallurgy, 2010, vol. 104, pp. 235–240.CrossRefGoogle Scholar
  13. 13.
    Xu, H.S., Wei, C., Li, C.X., Fan, G, Deng, Z.G., Li, M.T., and Li, X.B., Hydrometallurgy, 2010, vol. 105, pp. 186–190.CrossRefGoogle Scholar
  14. 14.
    Xu, H.S., Wei, C., Li, C.X., Fan, G., Deng, Z.G., Zhou, X.J., and Qiu, S., Sep. Purif. Technol., 2012, vol. 85, pp. 206–212.CrossRefGoogle Scholar
  15. 15.
    Hua, Y., Lin, Z., and Yan, Z., Miner. Eng., 2002, vol. 15, pp. 451–456.CrossRefGoogle Scholar
  16. 16.
    Feng, L.Y., Yang, X.W., Shen, Q.F., Xu, M.L., and Jin, B.J., Hydrometallurgy, 2007, vol. 89, pp. 305–310.CrossRefGoogle Scholar
  17. 17.
    Zhang, Y.C., Deng, J.X., Chen, J., Yu, R.B., and Xing, X.R., Hydrometallurgy, 2013, vol. 131–132, pp. 89–92.CrossRefGoogle Scholar
  18. 18.
    Ju, S.H., Tang, M.T., Yang, S.H., and Li, Y.N., Hydrometallurgy, 2005, vol. 80, pp. 67–74.CrossRefGoogle Scholar
  19. 19.
    Ding, Z.Y., Yin, Z.L., Hu, H.P., and Chen, Q.Y., Hydrometallurgy, 2010, vol. 104, pp. 201–206.CrossRefGoogle Scholar
  20. 20.
    Li, Q.X., Chen, Q.Y., and Hu, H.P., J. Cent. South Univ., 2014, vol. 21, pp. 884–890.CrossRefGoogle Scholar
  21. 21.
    Wang, X., Chen, Q.Y., Hu, H.P., Yin, Z.L., and Xiao, Z.L., Hydrometallurgy, 2009, vol. 99, pp. 231–237.CrossRefGoogle Scholar
  22. 22.
    Gernon, M.D., Wu, M., Buszta, T., and Janney, P., Green Chem., 1999, vol. 1, pp. 127–140.CrossRefGoogle Scholar
  23. 23.
    Wu, Z.H., Dreisinger, D.B., Urch, H., and Fassbender, S., Hydrometallurgy, 2014a, vol. 142, pp. 23–35.CrossRefGoogle Scholar
  24. 24.
    Wu, Z.H., Dreisinger, D.B., Urch, H., and Fassbender, S., Hydrometallurgy, 2014b, vol. 142, pp. 121–130.CrossRefGoogle Scholar
  25. 25.
    Dickinson, C.F. and Heal, G.R., Thermochim. Acta, 1999, vol. 340–341, pp. 89–103.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • Qicheng Feng
    • 1
  • Shuming Wen
    • 1
    Email author
  • Wenjuan Zhao
    • 2
  • Xv Bai
    • 1
  • Yu Chen
    • 1
  1. 1.State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationFaculty of Land Resource Engineering, Kunming University of Science and TechnologyKunmingP.R. China
  2. 2.Kunming Metallurgical Research InstituteKunmingP.R. China

Personalised recommendations