Advertisement

Russian Journal of Non-Ferrous Metals

, Volume 54, Issue 6, pp 522–526 | Cite as

Features for formation of solid alloys of chromium carbide and titanium powder mixtures by explosion energy

  • A. V. Krokhalev
  • V. O. Kharlamov
  • S. V. Kuz’min
  • V. I. Lysak
Theory and Processes of Forming and Sintering of Powder Materials

Abstract

The explosive compaction of chromium carbide (Cr3C2) and titanium powder mixtures is investigated. The phase composition of fabricated alloys was studied using electron probe microanalysis. It is found that the chemical composition of alloy components undergoes no changes and no redistribution of elements between occurs. The effect of explosive loading modes on the porosity and hardness of powder materials is revealed. It is shown that the explosion compaction of high-melting carbides and metals powder mixtures makes it possible to form consolidated hard alloys during the compacting stage. Formation features of interfaces between material components during shock-wave processing were investigated using electron microscopy. It was revealed that, in order to form strong interfacial surfaces, it is necessary that the powder heating temperature during the shock wave compression would exceed (0.35–0.4)T m, where T m is the melting temperature of the base carbide of the alloy.

Keywords

chromium carbide titanium hard alloy explosive compacting of powders consolidation of powder material interfacial surfaces porosity hardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pruemmer, R.A., Balakrishna, Bhat T., Siva, Kumar K., and Hokamoto, K., Explosive compaction of powders and composites, Enfield, NH: Sci. Publ., 2006.Google Scholar
  2. 2.
    Krokhalev, A.V., Kharlamov, V.O., Kuz’min, S.V., and Lysak, V.I., Izv. Volgograd Gos. Tekhn. Univ., Ser. Svarka Vzryv. Svoistva Svarn. Soed., 2010, vol. 65, no. 5, p. 117.Google Scholar
  3. 3.
    Wang, D.Y., Weng, K.W., Chang, C.L., and Ho, W.Y., Surf. Coat. Technol., 1999, vol. 120, p. 622.CrossRefGoogle Scholar
  4. 4.
    Krokhalev, A.V., Kuz’min, S.V., Lysak, V.I., and Kharlamov, V.O., Trudy VII mezhdunarodnoi Rossiisko-Kazakhstansko-Yaponskoi nauchnoi konferentsii “Perspektivnye tekhnologii, oborudovanie i analiticheskie sistemy dlya materialovedeniya i nanomaterialov”, Volgograd (Proc. 7th Int. Russia-Kazakhstan-Japan Sci. Conf. “Advanced Technologies, Equipment, and Analytical Systems for Material Science and Nanomaterials”, Volgograd), Moscow: Moscow State Industrial Univ., 2009, p. 425.Google Scholar
  5. 5.
    Krokhalev, A.V., Kharlamov, V.O., Kuz’min, S.V., and Lysak, V.I., Izv. Volgograd Gos. Tekhn. Univ., Ser. Svarka Vzryv. Svoistva Svarn. Soed., 2010, vol. 65, no. 5, p. 110.Google Scholar
  6. 6.
    Krokhalev, A.V., Kharlamov, V.O., Kuz’min, S.V., and Lysak, V.I., Programma dlya rascheta parametrov szhatiya poroshkovykh materialov pri impul’snom nagruzhenii (vzryvnoe kompaktirovanie). Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM (Software for Calculation of Compaction Parameters of Powder Materials during Pulse Stressing (Explosive Compaction). RF Certificate of State Registration of Software, no. 2010616142, 2010.Google Scholar
  7. 7.
    Krasulin, Yu.L. and Nazarov, G.Z., Mikrosvarka davleniem (Pressure Mircowelding), Moscow: Metallurgiya, 1976.Google Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • A. V. Krokhalev
    • 1
  • V. O. Kharlamov
    • 1
  • S. V. Kuz’min
    • 1
  • V. I. Lysak
    • 1
  1. 1.Volgograd State Technical UniversityVolgogradRussia

Personalised recommendations