Advertisement

Mathematical Methods of Statistics

, Volume 27, Issue 2, pp 145–161 | Cite as

The Deficiency Introduced by Resampling

  • T. Wiklund
Article
  • 14 Downloads

Abstract

When the classical nonparametric bootstrap is implemented by a Monte-Carlo procedure one resamples values from a sequence of, typically, independent and identically distributed ones. But what happens when a decision has to be taken based on such resampled values? One way to quantify the loss of information due to this resampling step is to consider the deficiency distance, in the sense of Le Cam, between a statistical experiment of n independent and identically distributed observations and the one consisting of m observations taken from the original n by resampling with replacement. By comparing with an experiment where only subsamplingwith a random subsampling size has been performed one can bound the deficiency in terms of the amount of information contained in additional observations. It follows for certain experiments that the deficiency distance is proportional to the expected fraction of observations missed when resampling.

Keywords

deficiency resampling bootstrap comparison of experiments 

2010 Mathematics Subject Classification

62B15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Adamski, “On the Relations between Continuous and Nonatomic Measures”, Math. Nachr. 99, 55–60 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. Erdõs and A. Rényi, “On a Classical Problem of Probability Theory”, Magyar Tud. Akad. Mat. Kutató Int. Közl. 6, 215–220 (1961).MathSciNetzbMATHGoogle Scholar
  3. 3.
    M. Falk and F. Marohn, “On the Loss of Information due to Nonrandom Truncation”, J. Multivar. Anal. 72, 1–21 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    V. Genon-Catalot and C. Larédo, “Asymptotic Equivalence of Nonparametric Diffusion and Euler Scheme Experiments”, Ann. Statist. 42, 1145–1165 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    S. Greenberg and M. Mohri, “Tight Lower Bound on the Probability of a Binomial Exceeding its Expectation”, Statist. Probab. Lett. 86, 91–98 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. Helgeland, “Additional Observations and Statistical Information in the Case of 1-Parameter Exponential Distributions”, Z. Wahrsch. undVerw.Gebiete 59, 77–100 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. Janssen and R.-D. Reiss, “Comparison of Location Models ofWeibull Type Samples and Extreme Value Processes”, Probab. Theory Rel. Fields 78, 273–292 (1988).CrossRefzbMATHGoogle Scholar
  8. 8.
    A. Janssen and F. Marohn, “On Statistical Information of Extreme Order Statistics, Local Extreme Value Alternatives, and Poisson Point Processes”, J.Multivar. Anal. 48, 1–30 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    N. L. Johnson A. W. Kemp and S. Kotz, Univariate Discrete Distributions, 2nd. ed. (Wiley, New York, 2005).CrossRefzbMATHGoogle Scholar
  10. 10.
    V. Konakov E. Mammen and J. Woerner, “Statistical Convergence of Markov Experiments to Diffusion Limits”, Bernoulli 20, 623–644 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    L. Le Cam, “Sufficiency and Approximate Sufficiency”, Ann. Math. Statist. 35, 1419–1455 (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    L. Le Cam, “On the Information Contained in Additional Observations”, Ann. Statist. 2, 630–649 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    E. Mammen, “The Statistical InformationContained in AdditionalObservations”, Ann. Statist. 14, 665–678 (1986).MathSciNetCrossRefGoogle Scholar
  14. 14.
    E. Mammen, When Does Bootstrap Work? Asymptotic Results and Simulations (Springer, New York, 1992).CrossRefzbMATHGoogle Scholar
  15. 15.
    E. Mariucci, “Asymptotic Equivalence of Discretely Observed Diffusion Processes and Their Euler Scheme: Small Variance Case”, Statist. Inference Stoch. Process. 19, 71–91 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    F. Marohn, “Global Sufficiency of Extreme Order Statistics in Location Models of Weibull Type”, Probab. Theory Rel. Fields 88, 261–268 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    F. Marohn, “Neglecting Observations in Gaussian Sequences of Statistical Experiments”, Statist. Decisions 13, 83–92 (1995).MathSciNetzbMATHGoogle Scholar
  18. 18.
    G. Milstein and M. Nussbaum, “Diffusion Approximation for Nonparametric Autoregression”, Probab. Theory Rel. Fields 112, 535–543 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    H. Putter and W. R. van Zwet, “Resampling: Consistency of Substitution Estimators”, Ann. Statist. 24, 2297–2318 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    R.-D. Reiss, “A New Proof of the Approximate Sufficiency of Sparse Order Statistics”, Statist. Probab. Lett. 4, 233–235 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    R.-D. Reiss M. Falk and M. Weller, “Inequalities for the Relative Sufficiency between Sets of Order Statistics”, in Statistical Extremes and Applications (Springer, Dordrecht, 1984), pp. 597–610.CrossRefGoogle Scholar
  22. 22.
    E. Schechter, Handbook of Analysis and Its Foundations (Academic Press, San Diego, 1997).zbMATHGoogle Scholar
  23. 23.
    S. Y. T. Soon, “Binomial Approximation for Dependent Indicators”, Statist. Sinica 6, 703–714 (1996).MathSciNetzbMATHGoogle Scholar
  24. 24.
    H. Strasser, “Towards a Statistical Theory of Optimal Quantization”, in Data Analysis: Scientific Modeling and Practical Application (Springer, Berlin–Heidelberg, 2000), pp. 369–383.CrossRefGoogle Scholar
  25. 25.
    E. N. Torgersen, “Comparison of Experiments when the Parameter Space is Finite”, Z.Wahrsch. und Verw. Gebiete 16, 219–249 (1970).CrossRefzbMATHGoogle Scholar
  26. 26.
    E. N. Torgersen, “Comparison of Translation Experiments”, Ann. Math. Statist. 43, 1383–1399 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    E. N. Torgersen, “Measures of Information Based on Comparison with Total Information and with Total Ignorance”, Ann. Statist. 9, 638–657 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    E. N. Torgersen, Comparison of Statistical Experiments, in Encyclopedia of Mathematics and its Applications (Cambridge Univ. Press, Cambridge, 1991).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Dept. Math.Uppsala Univ.UppsalaSweden

Personalised recommendations