Advertisement

Mathematical Methods of Statistics

, Volume 26, Issue 2, pp 134–148 | Cite as

A unified approach to estimation of noncentrality parameters, the multiple correlation coefficient, and mixture models

  • T. KubokawaEmail author
  • É. MarchandEmail author
  • W. E. StrawdermanEmail author
Article
  • 76 Downloads

Abstract

We consider a class of mixture models for positive continuous data and the estimation of an underlying parameter θ of the mixing distribution. With a unified approach, we obtain classes of dominating estimators under squared error loss of an unbiased estimator, which include smooth estimators. Applications include estimating noncentrality parameters of chi-square and F-distributions, as well as ρ 2/(1 − ρ 2), where ρ is amultivariate correlation coefficient in a multivariate normal set-up. Finally, the findings are extended to situations, where there exists a lower bound constraint on θ.

Keywords

estimation lower bounded parameter mixtures multiple correlation coefficient noncentrality parameter 

2000 Mathematics Subject Classification

62C20 62C86 62F10 62F15 62F30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. O. Berger, A. Philippe, and C. P. Robert, “Estimation of Quadratic Functions: Noninformative Priors for Noncentrality Parameters”, Statist. Sinica 8, 359–375 (1998).MathSciNetzbMATHGoogle Scholar
  2. 2.
    L. Brown, I. Johnstone, and B. MacGibbon, “Variation Diminishing Transfromations: A Direct Approach to Total Positivity and Its Statistical Applications”, J. Amer. Statist. Assoc. 76, 824–832 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M. S. Chow, “A Complete Class Theorem for Estimating a Noncentrality Parameter”, Ann. Statist. 15, 800–804 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    R. A. Fisher, “The Influence of Rainfall on the Yield of Wheat at Rothamsted”, Philos. Trans. Roy. Soc. London, Ser. B 213, 89–124 (1924).CrossRefGoogle Scholar
  5. 5.
    J. Gurland, “A Relatively Simple Form of the Distribution of the Multiple Correlation Coefficient”, J. Roy. Statist. Soc. B 30, 276–283 (1968).MathSciNetzbMATHGoogle Scholar
  6. 6.
    T. Kubokawa, C. P. Robert, and A. K. Md. E. Saleh, “Estimation of Noncentrality Parameters”, Canad. J. Statist. 21, 45–57 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    E. L. Lehmann and G. Casella, Point Estimation, in Springer Texts in Statistics (Springer, New York, 1998).Google Scholar
  8. 8.
    E. L. Lehmann, Testing Statistical Hypotheses, in Springer Texts in Statistics (Springer, New York, 1986).Google Scholar
  9. 9.
    P. L. Leung, “Improved Estimation of Functions of the Canonical Correlation Coefficients”, Commun. Statist.–Theory Methods 23, 831–840 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    P. L. Leung and R. J. Muirhead, “Estimation of Parameter Matrices and Eigenvalues in MANOVA and Canonical Correlation Analysis”, Ann. Statist. 15, 1651–1666 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Lo and P. L. Leung, “Decision Theoretic Estimation of Functions of the Canonical Correlation Coefficients”, Commun. Statist.–Theory Methods 25, 1985–1995 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Q. Li, J. Zhang, and S. Dai, “On Estimating the Noncentrality Parameter of a Chi-Squared Distribution”, Statist. Probab. Lett. 79, 98–104 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    É. Marchand and W. E. Strawderman, “On Improving on the Minimum Risk Equivariant Estimator of a Location Parameter Which is Constrained to an Interval or a Half-Interval”, Ann. Inst. Statist. Math. 57, 129–143 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    É. Marchand, “Point Estimation of the Coefficient of Determination”, Statist. Decisions 19, 137–154 (2001).MathSciNetzbMATHGoogle Scholar
  15. 15.
    R. J. Muirhead, Aspects of Multivariate Statistical Theory (Wiley, New York, 1982).CrossRefzbMATHGoogle Scholar
  16. 16.
    R. J. Muirhead, “Estimating a Particular Function of the Multiple Correlation Coefficient”, J. Amer. Statist. Assoc. 80, 923–925 (1985).MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. J. Muirhead and P. L. Leung, “Estimating Functions of Canonical Correlation Coefficients”, Linear Algebra Appl. 70, 173–183 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    N. Neff and W. E. Strawderman, “Further Remarks on Estimating the Parameter of a Noncentral Chi- Squared Distribution”, Comm. Statist. A 5, 65–76 (1976).CrossRefzbMATHGoogle Scholar
  19. 19.
    I. Olkin and J. W. Pratt, “Unbiased Estimation of Certain Correlation Coefficients”, Ann. Math. Statist. 29, 201–211 (1958).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    M. D. Perlman and V. A. Rasmussen, “Some Remarks on Estimating a Noncentrality Parameter”, Comm. Statist. A 4, 455–468 (1975).MathSciNetzbMATHGoogle Scholar
  21. 21.
    A. L. Rukhin, “Estimation of the Noncentrality Parameter of an F-Distribution”, J. Statist. Plann. Inf. 35, 201–311 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    K. M. L. Saxena and K. Alam, “Estimation of the Noncentrality Parameter of the Chi-Squared Distribution”, Ann. Statist. 10, 1012–1016 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    P. Y.-S. Shao and W. E. Strawderman, “Improving on the Positive Part of the UMVUE of a Noncentrality Parameter of a Noncentral Chi-Square Distribution”, J. Multivariate Anal. 53, 52–66 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    M. C. Spruill, “Computation of the Maximum Likelihood Estimate of a Noncentrality Parameter”, J. Multivariate Anal. 18, 216–224 (1986).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Dept. of EconomicsUniv. of TokyoTokyoJapan
  2. 2.Univ. de Sherbrooke, Départ. de math.Sherbrooke QcCanada
  3. 3.Dept. of Statist. and Biostatist.Rutgers Univ.PiscatawayUSA

Personalised recommendations