Mathematical Methods of Statistics

, Volume 19, Issue 1, pp 64–72 | Cite as

Testing skew normality via the moment generating function

  • S. G. MeintanisEmail author


In this paper, goodness-of-fit tests are constructed for the skew normal law. The proposed tests utilize the fact that the moment generating function of the skew normal variable satisfies a simple differential equation. The empirical counterpart of this equation, involving the empiricalmoment generating function, yields appropriate test statistics. The consistency of the tests is investigated under general assumptions, and the finite-sample behavior of the proposed method is investigated via a parametric bootstrap procedure.


skew normal distribution goodness-of-fit test moment generating function parametric bootstrap 

2000 Mathematics Subject Classification

62G10 62G20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Azzalini, “A Class of Distributions which Includes the Normal Ones”, Scand. J. Statist. 12, 171–178 (1985).zbMATHMathSciNetGoogle Scholar
  2. 2.
    S. Csörg”o and A.H. Welsh, “Testing for Exponential and Marshall-Olkin Distributions”, J. Statist. Plann. Inference 23, 287–300 (1989).CrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Dalla Valle, “A Test for the Hypothesis of Skew-Normality in a Population”, J. Statist. Comput. Simul. 77, 63–77 (2007).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    F. C. Drost, W. C. Kallenberg, and J. Oosterhoff, “The Power of EDF Tests of Fit Under Nonrobust Estimation of Nuisance Parameters”, Statist. & Decisions 8, 167–182 (1990).zbMATHMathSciNetGoogle Scholar
  5. 5.
    T. W. Epps and L. B. Pulley, “Parameter Estimates and Tests of Fit for Infinite Mixture Distributions”, Commun. Statist.-Theor. Meth. 14, 3125–3145 (1985).CrossRefGoogle Scholar
  6. 6.
    T. W. Epps, K. J. Sinlgeton, and L. B. Pulley, “A Test of Separate Families of Distributions Based on the Empirical Moment Generating Function”, Biometrika 69, 391–399 (1982).zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    C. Genest and B. Rémillard, “Validity of the Parametric Bootstrap for Goodness-of-Fit Testing in Semiparametric Models”, Ann. Inst. H. Poincaré Probab. Statist. 44, 1096–1127 (2008).zbMATHCrossRefGoogle Scholar
  8. 8.
    R. C. Gupta and N. Brown, “Reliability Studies of the Skew-Normal Distribution and Its Application to a Strength-Stress Model”, Commun. Statist.-Theor. Meth. 30, 2427–2445 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    A. K. Gupta and T. Chen, “Goodness-of-Fit Tests for the Skew-Normal Distribution”, Commun. Statist. Simul. Comput. 30, 907–930 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    N. Henze, “A Probabilistic Representation of the ’skew-Normal’ Distribution”, Scand. J. Statist. 13, 271–275 (1986).zbMATHMathSciNetGoogle Scholar
  11. 11.
    A. G. Kallioras, I. A. Koutrouvelis, and G. C. Canavos, “Testing the Fit of Gamma Distributions Using the Empirical Moment Generating Function”, Commun. Statist.-Theor. Meth. 35, 527–540 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    H.-J. Kim, “Binary Regression with a Class of Skewed t Models”, Commun. Statist.-Theor. Meth. 31, 1863–1886 (2002).zbMATHCrossRefGoogle Scholar
  13. 13.
    S. Kotz, T. J. Kozubowski, and K. Podgorski, The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering and Finance (Birkhauser, Boston, 2001).zbMATHGoogle Scholar
  14. 14.
    G. Mateu-Figueras, P. Puig, and A. Pewsey, “Goodness-of-Fit Tests for the Skew-Normal Distribution when the Parameters are Estimated from the Data”, Commun. Statist.-Theor. Meth. 36, 1735–1755 (2007).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    S.G. Meintanis, “A Kolmogorov-Smirnov Type Test for Skew-Normal Distributions Based on the Empirical Moment Generating Function”, J. Statist. Plann. Infer. 137, 2681–2688 (2007).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    S. G. Meintanis and J. Swanepoel, “Bootstrap Goodness-of-Fit Tests with Estimated Parameters Based on Empirical Transforms”, Statist. Probab. Lett. 77, 1004–1013 (2007).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  1. 1.Dept. of EconomicsNational and Kapodistrian Univ. of AthensAthensGreece

Personalised recommendations