Russian Mathematics

, Volume 62, Issue 11, pp 53–66 | Cite as

The Total Preservation of Unique Global Solvability of the First Kind Operator Equation With Additional Controlled Nonlinearity

  • A. V. ChernovEmail author


For the Cauchy problem associated with an evolutionary operator equation of the first kind with an additional controlled term which nonlinearly depends on the phase variable, in a Banach space, we establish conditions for the total (on the set of admissible controls) preservation of unique global solvability under variation of the control parameter. We also establish the uniform bound for solutions. As examples, we consider initial-boundary value problems that are associated with a pseudoparabolic equation and a system of Oskolkov equations.


evolutionary operator equation of the first kind in a Banach space controlled nonlinearity total preservation of unique global solvability pseudoparabolic equation system of Oskolkov equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chernov, A.V., “AMajorant Criterion for the Total Preservation of Global Solvability of Controlled Functional Operator Equation”, RussianMathematic. 55, No. 3, 85–95 (2011).zbMATHGoogle Scholar
  2. 2.
    Chernov, A. V., “On Total Preservation of Solvability of Controlled Hammerstein–Type Equation with Non–Isotone and Non–Majorizable Operator”, RussianMathematic. 61, No. 6, 72–81 (2017).zbMATHGoogle Scholar
  3. 3.
    Sumin, V. I., Functional Volterra Equations in Theory of Optimal Control of Distributed Systems. Part I (Nizni Novgorod State Univ., Nizni Novgorod, 1992) [in Russian].Google Scholar
  4. 4.
    Korpusov, M.O. and Sveshnikov, A.G., “Destruction of Solutions of Strongly Nonlinear Equations of Pseudoparabolic Type”, Sovremenn. Matem. i Ee Prilozh. 40, 3–138 (2006).Google Scholar
  5. 5.
    Sumin, V. I. and Chernov, A. V. “Volterra Functional Operator Equations in the Theory of Optimal Control of Distributed Systems”, Intern. Conf. ‘System Dynamics and Control Processes’, dedicated to 90th Anniversary of Acad. N. N. Krasovski, Ekaterinburg, Russia, September 15–20, 2014 (Russian Academy of Science, Ural Branch, Ural Federal University, Ekaterinburg, 2015), pp. 293–300 [in Russian].Google Scholar
  6. 6.
    Gaevsky, H., Gröger, K., Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie–Verlag, Berlin, 1974; Mir,Moscow, 1978) [Russ. transl.].zbMATHGoogle Scholar
  7. 7.
    Chernov, A. V., “A Majorant–Minorant Criterion for the Total Preservation of Global Solvability of a Functional Operator Equation”, RussianMathematics 56, Izv. Vyssh.Uchebn. Zaved.,Matem.,№3, 55–65 (2012).Google Scholar
  8. 8.
    Ladyzhenskaya, O. A. and Ural’tseva, N. N., Linear and Quasilinear Elliptic Equations (Nauka,Moscow, 1973) [in Russian].zbMATHGoogle Scholar
  9. 9.
    Chen, P. J., Gurtin, M. E. “On a Theory of Heat Conduction Involving Two Temperatures”, Z.Angew.Math. Phys. 19, No. 4, 614–627 (1968).CrossRefzbMATHGoogle Scholar
  10. 10.
    Barenblatt, G. I., Zheltov, Yu. P., and Kochina, I. N. “Basic Concepts in the Theory of Seepage of Homogeneous Liquids in Fissured Rocks (Strata)”, PMM, J. Appl.Math. Mech. 24, 1286–1303 (1961).CrossRefzbMATHGoogle Scholar
  11. 11.
    Barenblatt, G. I., Garcia–Azorero, J., De Pablo, A., Vazquez, J. L. “Mathematical Model of the Non–EquilibriumWater–Oil Displacement in Porous Strata”, Appl. Anal. 65, No. 1–2, 19–45 (1997).Google Scholar
  12. 12.
    Helmig, R., Weiss, A., Wohlmuth, B. I. “Dynamic Capillary Effects in Heterogeneous Porous Media”, Comput. Geoscience. 11, No. 3, 261–274 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Benjamin, T. B., Bona, J. L., Mahony, J. J. “Model Equations for Long Waves in Nonlinear Dispersive Systems”, Philos. Trans. Royal Soc. London. Ser.. 272 (1220), 47–78 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sveshnikov, A. G., Al’shin, A. B., Korpusov, M. O., Pletner, Yu. D. Linear and Nonlinear Equations of Sobolev Type (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  15. 15.
    Chernov, A. V. “On Piecewise Constant Approximation in Distributed Optimization Problems”, Trudy IMM UrO RA. 21, No. 1, 305–321 (2015).[in Russian].MathSciNetGoogle Scholar
  16. 16.
    Yosida, K. Functional Analysis (Springer–Verlag, Berlin–Göttingen–Heidelberg, 1965;Mir,Moscow, 1967).CrossRefzbMATHGoogle Scholar
  17. 17.
    Zvyagin, V. G. and Turbin, M. V. “The Study of Initial–Boundary Value Problems for Mathematical Models of Kelvin–Voigt Fluids”, Sovremenn.Matem. Fundament. Napravleniy. 31, 3–144 (2009).[in Russian].Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Nizhni Novgorod State University named after N. I. LobachevskiiNizhni NovgorodRussia

Personalised recommendations