Russian Mathematics

, Volume 62, Issue 11, pp 23–27 | Cite as

Classification of Extended Clifford Algebras

  • N. G. MarchukEmail author


Considering tensor products of special commutative algebras and general real Clifford algebras, we arrive at extended Clifford algebras. We have found that there are five types of extended Clifford algebras. The class of extended Clifford algebras is closed with respect to the tensor product.


Clifford algebra quasi-Clifford algebras extended Clifford algebra tensor product Cartan–Bott periodicity complexification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gastineau–Hills, H.M. “Quasi Clifford algebras and Systems of Orthogonal Designs”, J. Austral.Math. Soc. (Series A. 32, No. 1, 1–23 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Susinder, R. G., Sundar, R. B. “STBCs From Representation of Extended Clifford Algebras”, arXiv:0704.2507v1 (2007).Google Scholar
  3. 3.
    Porteous, I. R. Clifford Algebras and the Classical Groups, Cambridge Studies in Advanced Mathematics 50 (Cambridge University Press, 1995).CrossRefGoogle Scholar
  4. 4.
    Marchuk, N. G., Shirokov, D. S. “General Solutions of One Class of Field Equations”, Reports on Mathematical Physic. 78, No. 3, 305–326 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Zharinov, V. V. “Backlund Transformations”, Theor.Math. Phys. 189, No. 3, 1681–1692 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Zharinov, V. V. “Conservation Laws, Differential Identities, and Constraints of Partial Differential Equations”, Theor. Math. Phys. 185, No. 2, 1557–1581 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Marchuk, N. G. “Demonstration Representation and Tensor Products of Clifford Algebras”, Proc. Steklov Inst.Math. 290, 143–154 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jacobson, N. Structure and Representations of Jordan Algeba American Math. Soc., Colloquium Publications 39 (1968).Google Scholar
  9. 9.
    Lounesto, P. Clifford Algebras and Spinors (Cambridge Univ. Press, 1997, 2001).CrossRefzbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations