Russian Mathematics

, Volume 62, Issue 4, pp 42–51

# An Approach to the Determination of the Resultant of Two Entire Functions

Article

## Abstract

We calculate the sum of the values of an entire function at the zeros of the other entire function by means of the formula of logarithmic residue. As a result, we can answer the question whether these functions have common zeros or not. Thus, we developed an approach to the determination of the resultant of two entire functions.

## Keywords

resultant entire function logarithmic residue

## References

1. 1.
van der Waerden, B. L. Algebra (Springer-Verlag, Berlin–Heidelberg–New York, 1966; Nauka, Moscow, 1976).
2. 2.
Kurosh, A. G. Course in Higher Algebra (Nauka, Moscow, 1968) [Russian translation].
3. 3.
Bourbaki, N. Algebra. Polynomials and Fields, Ordered Proups (Nauka, Moscow, 1965) [Russian translation].Google Scholar
4. 4.
Krein, M. G., Naimark, M. A. “The Method of Symmetric and Hermitian Forms in the Theory of the Roots of Algebraic Equation”, Linear and Multilinear Algebra 10, 265–308 (1981).
5. 5.
Gohberg, I. C., Heinig, G. “Resultant Matrix and its Generalization. I. Resultant Operator of Matrix Polynomial”, Acta Sci.Math. 72, 41–61 (1975).
6. 6.
Gohberg, I. C., Heinig, G. “Resultant Matrix and its Generalization. II. Continual Analog of Resultant Matrix”, Acta Math. Acad. Sci. Hungar 28, 189–209 (1976).
7. 7.
Gohberg, I. C., Lerer, L. E. “Resultant Operators of a Pair of Analytic Functions”, Proc. Amer. Math. Soc. 72, No. 1, 65–73 (1978).
8. 8.
Gustafsson, B., Tkachev, V. G. “The Resultant on Compact Riemann Surfaces”, Comm. Math. Physics 10, 265–308 (2009).
9. 9.
Morozov, A. Yu., Shakirov, Sh. R. “New and Old Resultant in Resultant Theory”, Theor. math. phys. 163 (2), 587–617 (2010).
10. 10.
Bykov, V. I., Tsybenova, S. B. Nonlinear Models of Chemical Kinetics (KRASAND, Moscow, 2011) [in Russian].
11. 11.
Kytmanov, A. M., Naprienko, Ya. M. “One Approach to Finding the Resultant of Two Entire Functions”, Complex analysis and elliptic equat. 62, No. 2, 269–286 (2017).
12. 12.
Kytmanov, A.M., Khodos, O. V. “On Localization of Zeros of an Entire Function of Finite Order of Growth”, Complex variables and operator theory 11, No. 2, 393–416 (2017).
13. 13.
Shabat, B. V. Introduction to Complex Analysis (Nauka, Moscow, 1976), Vol. 1 [in Russian].Google Scholar
14. 14.
Titchmarsh, E. C. The Theory of Functions (Nauka, Moscow, 1980) [in Russian].
15. 15.
Markushevitch, A. I. Theory of Analytical Functions (Nauka, Moscow, 1968), Vol. 2 [in Russian].Google Scholar
16. 16.
Bykov, V. I., Kytmanov, A. M., Lazman, M. Ya. The Exclusion Methods in Computer Algebra of Polynomials (Nauka, Novosibirsk, 1989) [in Russian].