Advertisement

Russian Mathematics

, Volume 61, Issue 10, pp 44–53 | Cite as

Two-level iterative method for non-stationary mixed variational inequalities

  • I. V. KonnovEmail author
  • Salahuddin
Article

Abstract

We consider a mixed variational inequality problem involving a set-valued nonmonotone mapping and a general convex function, where only approximation sequences are known instead of exact values of the cost mapping and function, and feasible set. We suggest to apply a two-level approach with inexact solutions of each particular problem with a descent method and partial penalization and evaluation of accuracy with the help of a gap function. Its convergence is attained without concordance of penalty, accuracy, and approximation parameters under coercivity type conditions.

Keywords

mixed variational inequality >non-stationarity non-monotone mappings potential mappings approximate solutions penalty method gap function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lescarret, C. “Cas d’Addition des Applications MonotonesMaximales dan un Espace de Hilbert”, in Compt. Rend. Acad. Sci. (Paris, 1965), 261, pp. 1160–1163.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Browder, F. E. “On the Unification of the Calculus of Variations and the Theory of Monotone Nonlinear Operators in Banach Spaces”, Proc. Nat. Acad. Sci. USA 56 (2), 419–425 (1966).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Duvaut, D. and Lions, J.-L. Les Inéquations en Mechanique et Physique, Dunod, Paris, 1972; Nauka, Moscow, 1980).zbMATHGoogle Scholar
  4. 4.
    Panagiotopoulos, P. D. Inequality Problems in Mechanics and Their Applications, Birkhauser, Boston, 1985; Mir, Moscow, 1989).Google Scholar
  5. 5.
    Patriksson, M. Nonlinear Programming and Variational Inequality Problems: A Unified Approach (Kluwer Academic Publishers, Dordrecht, 1999).CrossRefzbMATHGoogle Scholar
  6. 6.
    Konnov, I. V. Combined Relaxation Methods for Variational Inequalities (Springer, Berlin, 2001).CrossRefzbMATHGoogle Scholar
  7. 7.
    Konnov, I. V. Nonlinear Optimization and Variational Inequalities (Kazan Univ. Press, Kazan, 2013) [in Russian].Google Scholar
  8. 8.
    Alart, P., Lemaire, B. “Penalization in Non-Classical Convex Programming via Variational Convergence”, Math. Program. 51, No. 1, 307–331 (1991).CrossRefzbMATHGoogle Scholar
  9. 9.
    Cominetti, R. “Coupling the Proximal Point Algorithm With Approximation Methods”, J. Optim. Theory Appl. 95, No. 3, 581–600 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Antipin, A. S. and Vasil’ev, F. P. “A Stabilization Method for Equilibrium Programming Problems With an Approximately Given Set”, Comput. Math. Math. Phys. 39, No. 11, 1707–1714 (1999).MathSciNetzbMATHGoogle Scholar
  11. 11.
    Salmon, G., Nguyen, V. H., Strodiot, J. J. “Coupling the Auxiliary Problem Principle and Epiconvergence Theory for Solving General Variational Inequalities”, J. Optim. Theory Appl. 104, No. 3, 629–657 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kaplan, A., Tichatschke, R. “A General View on Proximal Point Methods for Variational Inequalities in Hilbert Spaces”, J. Nonlin. Conv. Anal. 2, No. 3, 305–332 (2001).zbMATHGoogle Scholar
  13. 13.
    Konnov, I. V. “Application of Penalty Methods to Non-Stationary Variational Inequalities”, Nonlinear Analysis: Theory, Methods and Appl. 92, No. 1, 177–182 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Konnov, I. V. “Application of the Penalty Method to Nonstationary Approximation of an Optimization Problem”, RussianMathematics 58, No. 8, 49–55 (2014).MathSciNetzbMATHGoogle Scholar
  15. 15.
    Konnov I.V. “An Inexact Penalty Method for Non-Stationary Generalized Variational Inequalities”, Setvalued and variational anal. 23, No. 2, 239–248 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fukushima, M., Mine, H. “A Generalized Proximal Point Algorithm for Certain Non-Convex Minimization Problems”, Intern. J. Syst. Sci. 12, No. 8, 989–1000 (1981).CrossRefzbMATHGoogle Scholar
  17. 17.
    Patriksson, M. “Cost Approximation: AUnified Framework of DescentAlgorithms forNonlinear Programs”, SIAM J. Optim. 8, No. 2, 561–582 (1998).MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ermoliev, Y. M., Norkin, V. I., Wets, R. J. B. “The Minimization of Semicontinuous Functions: Mollifier Subgradient”, SIAM J. Contr. Optim. 33, No. 1, 149–167 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Czarnecki, M.-O., Rifford, L. “Approximation and Regularization of Lipschitz Functions: Convergence of the Gradients”, Trans.Amer.Math. Soc. 358, No. 10, 4467–4520 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gwinner, J. “On the Penalty Method for Constrained Variational Inequalities”, in Optimization: Theory and Algorithms, Ed. by J.-B. Hiriart-Urruty, W. Oettli, and J. Stoer (Marcel Dekker, New York, 1981), pp. 197–211.Google Scholar
  21. 21.
    Blum, E., Oettli, W. “From Optimization and Variational Inequalities to Equilibrium Problems”, TheMath. Student 63, No. 1, 123–145 (1994).MathSciNetzbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Kazan Federal UniversityKazanRussia
  2. 2.Jazan UniversityJazanSaudi Arabia

Personalised recommendations