Abstract
We introduce a notion of a monoidal category over verbal category. In such categories we define algebras over multicategories over the same verbal categories. We also explicitly compute categories of algebras for two classes of multicategories.
Keywords
verbal category multicategory multifunctor natural multitransformation algebra over multicategory commutative operadPreview
Unable to display preview. Download preview PDF.
References
- 1.Tronin, S. N. “Natural Multitransformations ofMultifunctors”, RussianMathematics (Iz. VUZ) 55, No. 11, 49–60 (2011).MathSciNetzbMATHGoogle Scholar
- 2.Tronin, S. N. “Abstract Clones and Operads”, SiberianMathematical Journal 43, No. 4, 746–755 (2002).MathSciNetGoogle Scholar
- 3.Tronin, S. N. “Operads and Varieties of Algebras Defined by Polylinear Identities”, Siberian Mathematical Journal 47, No. 3, 555–573 (2006).CrossRefMathSciNetGoogle Scholar
- 4.Tronin, S. N. “Multicategories and Varieties of Many-Sorted Algebras”, SiberianMathematical Journal 49, No. 5, 944–958 (2008).MathSciNetGoogle Scholar
- 5.Tronin, S. N., Kopp, O. A. “Matrix Linear Operads”, Russian Mathematics (Iz. VUZ) 44, No. 6, 50–59 (2000).MathSciNetzbMATHGoogle Scholar
- 6.Kelly, G. M., Street, R. “Review of the Elements of 2-Categories”, in Proceedings of Sydney Category Seminar 1972/1973 (Berlin–Heidelberg, Springer Verlag, 1974). pp. 75–103 (Lect. NotesMath., Vol. 420).CrossRefGoogle Scholar
- 7.MacLane, S. Categories for the Working Mathematician (Springer, 1998; Fizmatlit, Moscow, 2004).Google Scholar
- 8.Borceuxm, F. Handbook of Categorical Algebra 2. Categories and Structures (Cambridge University Press, 1994).CrossRefGoogle Scholar
- 9.Leinster, T. Higher Operads, Higher Categories (London Math. Soc. Lect. Notes Ser., Cambr. Univ. Press, 2003).Google Scholar
- 10.Artamonov, V. A. “Multioperator Algebras and Clones of Polylinear Operators”, Russian Mathematical Surveys 24, No. 1, 45–59 (1969).CrossRefMathSciNetzbMATHGoogle Scholar
- 11.Tronin, S. N. “Algebras Over Operad of Spheres”, RussianMathematics (Iz. VUZ) 54, No. 3, 63–71 (2010).MathSciNetzbMATHGoogle Scholar
- 12.Johnstone, P. Topos Theory (Academic Press, 1977; Nauka, Moscow, 1986).Google Scholar
- 13.Pinus, A. G. Conditional Terms and Their Applications in Algebra and Computation Theory (NSTU Press, Novosibirsk, 2002) [in Russian].Google Scholar
- 14.Hermida, C. “RepresentableMulticategories”, Adv. Math. 151, No. 2, 164–225 (2000).CrossRefMathSciNetzbMATHGoogle Scholar
Copyright information
© Allerton Press, Inc. 2016