Advertisement

Russian Mathematics

, Volume 58, Issue 9, pp 22–35 | Cite as

Variational inequalities with strong nonlinearities

  • V. S. KlimovEmail author
Article
  • 32 Downloads

Abstract

We study a connection between critical values and topological characteristics of non-smooth functionals. We establish analogs of theorems about regular interval and “nek”. We also find lower estimates of solutions to variational inequalities with odd potential operators.

Keywords

critical value topological characteristics of non-smooth functionals variational inequality Banach space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krasnosel’skii, M. A. and Zabreiko, P. P. Geometrical Methods of Nonlinear Analysis, (Nauka, Moscow, 1975; Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1984).Google Scholar
  2. 2.
    Pokhozhaev, S. I. “Solvability of Nonlinear Equations with Odd Operators,” Funct. Anal. Appl. 1, No. 3, 227–233 (1967).CrossRefGoogle Scholar
  3. 3.
    Skrypnik, I. V. Methods for Analysis of Nonlinear Elliptic Boundary-Value Problems, (Nauka, Moscow, 1990; AMS, 1994).Google Scholar
  4. 4.
    Bobylev, N. A., Emel’yanov, S. V., and Korovin, S. K. Geometrical Methods in Variational Problems (Magistr, Moscow, 1998) [in Russian].Google Scholar
  5. 5.
    Lions J. L. Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, (Dunod; Gauthier-Villars, Paris, 1969; Mir, Moscow, 1972).zbMATHGoogle Scholar
  6. 6.
    Gossez, J. P. “Nonlinear Elliptic Boundary Value Problems for Equations with Rapidly or Slowly Coefficients,” Trans. Amer. Math. Soc. 190, No. 3, 163–205 (1974).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Klimov, V. S. “Nontrivial Solutions of Equations with Potential Operators,” Sib. Math. J. 21, 773–786 (1981).CrossRefGoogle Scholar
  8. 8.
    Klimov, V. S. “Topological characteristics of non-smooth functionals,” Izv. Math. 62, No. 5, 969–984 (1998).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Ambrosetti, A., Rabinowitz, P. “Dual Variational Methods in Critical Point Theory and Applications,” J. Funct. Anal. 14(4), 349–381 (1973).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Clark, D. C. “A Variant of Lusternik-Schnierelman Theory,” Indiana Univ. Math. J. 22, No. 1, 65–74 (1972).CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kantorovich, L. V., Akilov. G. P. Functional analysis (Nauka, Moscow, 1977; Pergamon Press, 1982).Google Scholar
  12. 12.
    Krasnosel’skii, M. A., Rutitskii, Ya. B. Convex Functions and Orlicz Spaces (Fizmatgiz, Moscow, 1958) [in Russian].Google Scholar
  13. 13.
    Sobolev, S. L., Vaskevich, V. L. The Theory of Cubature Formulas (Nauka, Moscow, 1974; Dordrecht, Kluwer Academic Publishers, 1997).Google Scholar
  14. 14.
    Borisovich, Yu. G., Gel’man, B. D., Myshkis, A. D., Obukhovskij, V. V. “Topological Methods in the Fixed-Point Theory of Multi-Valued Maps,” Russ. Math. Surv. 35, No. 1, 65–143 (1980).CrossRefzbMATHGoogle Scholar
  15. 15.
    Ekeland, I., Temam, R. Convex Analysis and Variational Problems (Paris-Bruxelles-Montreal, Dunod; Gauthier-Villars, 1974; Mir, Moscow, 1979).zbMATHGoogle Scholar
  16. 16.
    Ladyzhenskaya, O. A. “On the Determination of Minimal Global Attractors for the Navier-Stokes and Other Partial Differential Equations,” Russ. Math. Surv. 42, No. 6, 27–73 (1987).CrossRefzbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  1. 1.Yaroslavl State UniversityYaroslavlRussia

Personalised recommendations