Advertisement

Russian Mathematics

, Volume 57, Issue 9, pp 53–57 | Cite as

A weak solvability of a system of thermoviscoelasticity for the Jeffreys model

  • V. G. Zvyagin
  • V. P. Orlov
Article

Abstract

We establish a weak solvability of the initial-boundary value problem for a dynamic model of thermoviscoelasticity. The problem under consideration is an extension of the Jeffreys model obtained with the help of a consequence of the energy balance equation. We study the corresponding initial-boundary value problem by splitting the problem and reducing it to an operator equation in a suitable Banach space.

Keywords and phrases

Jeffreys model of viscoelasticity temperature expansion a priori estimates fixed point 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Reiner, Rheology (Fizmatgiz, Moscow, 1965) [in Russian].Google Scholar
  2. 2.
    D. A. Vorotnikov and V. G. Zvyagin, “On the Existence of Weak Solutions for the Initial-Boundary Value Problem in the JeffreysModel of Motion of aViscoelasticMedium,” Abstr. Appl. Anal. 10, 815–829 (2004).MathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Feireisl and J. Malek, “On the Navier-Stokes Equations with Temperature-Dependent Transport Coefficients,” Differ. Equat. NonlinearMech., 1–14, article ID 90616 (2006).Google Scholar
  4. 4.
    I. Pawlow and W. Zajaczkowski, “Unique Solvability of a Nonlinear Thermoviscoelasticity System Arising in Shape Memory Materials,” Discrete and Cont. Dynam. Systems SeriesS. Special issue on Thermodynamics and Phase Change 4, 441–466 (2011).MathSciNetzbMATHGoogle Scholar
  5. 5.
    S. N. Antontsev, A. V. Kazhikhov, and V. N. Monakhov, Boundary-Value Problems in Mechanics (Nauka, Novosibirsk, 1983) [in Russian].zbMATHGoogle Scholar
  6. 6.
    E. Bonetti and G. Bonfanti, “Existence and Uniqueness of the Solution to a 3D Thermoviscoelastic System,” Electro. J. Differential Equations (50), 1–15 (2003).Google Scholar
  7. 7.
    L. Consiglieri, “Friction Boundary Conditions on Thermal Incompressible Viscous Flows,” Ann. Mat. Pura Appl. 187(4), 647–665 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    T. Roubiček, “Thermo-visco-elastisity at Small Strains with L1 Data,” Quart. Appl. Math. 67(1), 47–41 (2009).MathSciNetzbMATHGoogle Scholar
  9. 9.
    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978; Mir, Moscow, 1980).Google Scholar
  10. 10.
    P. E. Sobolevskii, “Parabolic-Type Equations in Banach Spaces,” Trudy Mosk. Matem. Ob-va 10, 297–350 (1961).MathSciNetGoogle Scholar
  11. 11.
    M. A. Krasnosel’skii et al., Integral Operators on Spaces of Summable Functions (Nauka, Moscow, 1966) [in Russian].Google Scholar
  12. 12.
    P. E. Sobolevskii, “Coercive Inequalities for Abstract Parabolic Equations,” Sov. Phys. Dokl. 157, 52–55 (1964).MathSciNetGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations