Advertisement

Journal of Superhard Materials

, Volume 41, Issue 5, pp 334–344 | Cite as

Influence of μ-size WC on the Corrosion Behavior of Ultrafine WC/WC-Co Cemented Carbides

  • Chao LiuEmail author
  • Yang Liu
  • Yunzhu Ma
  • Wensheng Liu
  • Yuehui He
Production, Structure, Properties
  • 7 Downloads

Abstract

The electrochemical behavior of ultrafine WC/μ-WC-Co alloy with different grain sizes of WC particles was investigated in 1M HCl and 1M NaOH solutions using potentiodynamic polarization and surface analytical techniques. Good linear grain size dependence existed for the corrosion current density (Icorr). Alloys with smaller WC exhibited better corrosion resistance. Addition of μ-size WC particles can weaken the corrosion resistance of ultrafine WC/μ-WC-Co cemented carbide. The corrosion mechanism is discussed based on the SEM and EDS analysis. The predominant dissolution of the Co particles as the binder phase in HCl solution as well as WC matrix remained at the tangent surface. The benefits of Co(OH)2 protective film can only be utilized in alkaline solution.

Keywords

cemented carbides electrochemical behavior corrosion mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding

This work is supported by the National Basic Research Program of China (No. 61xxxx02) and the Key State Science and Technology Projects of China (2012ZX04003-021).

References

  1. 1.
    Katiyar, P.K., Singh, P. K., Singh, R., and Kumar, A., Modes of failure of cemented tungsten carbide tool bits (WC/Co): A study of wear parts, Int. J. Refract. Met. Hard Mater., 2016, vol. 54, pp. 27–38.CrossRefGoogle Scholar
  2. 2.
    Amiri-Moghaddam, A. and Kalantar, M., In-situ synthesis of WC-X% Co composite in the WO3-Co3O4-C system by carbothermal reduction method, J. Aust. Ceram. Soc., 2017, vol. 53, pp. 839–845.CrossRefGoogle Scholar
  3. 3.
    Liu, C., Lin, N., He, Y.H., Wu, C.H., and Jiang, Y., The effects of micron WC contents on the microstructure and mechanical properties of ultrafine WC-(micron WC-Co) cemented carbides, J. Alloys Compd., 2014, vol. 594, pp. 76–81.CrossRefGoogle Scholar
  4. 4.
    Shi, K.H., Zhou, K.C., Li, Z.Y., and Zan, X.Q., Optimization of Initial WC Grain-Size Distribution in WC-6Ni Cemented Carbides, J. Mater. Eng. Perform., 2014, vol. 23, pp. 3222–3228.CrossRefGoogle Scholar
  5. 5.
    Wan, W.C., Xiong, J., Guo, Z.X., Dong, G.B., and Yi, C.H., Effects of Cr3C2 addition on the erosion-corrosion behavior of Ti(C,N)-based cermets, Ceram. Int., 2013, vol. 39, pp. 6019–6028.CrossRefGoogle Scholar
  6. 6.
    Hochstrasser-Kurz, S., Reiss, D., Suter, T., Latkoczy, C., Günther, D., and Virtanen, S., ICP-MS, SKPFM, XPS, and microcapillary investigation of the local corrosion mechanisms of WC-Co hardmetal, J. Electrochem. Soc., 2008, vol. 155, pp. 415–426.CrossRefGoogle Scholar
  7. 7.
    Kellner, F.J.J., Lynch, R., and Virtanen, S., Influence of Ca ions and temperature on the corrosion behavior of WC—Co hardmetals in alkaline solutions, Int. J. Refract. Met. Hard Mater., 2010, vol. 28, pp. 370–376.CrossRefGoogle Scholar
  8. 8.
    Banerjee, D., Lal, G.K., and Upadhyaya, G.S., Effect of Binder-Phase Modification and Cr3C2 Addition on Properties of WC-10Co Cemented Carbide, J. Mater. Eng. Perform., 1995, vol. 4, pp. 563–572.CrossRefGoogle Scholar
  9. 9.
    Zhang, Q.K., Lin, N., and He, Y.H., Effects of Mo additions on the corrosion behavior of WC–TiC–Ni hardmetals in acidic solutions, Int. J. Refract. Met. Hard Mater., 2013, vol. 38, pp. 15–25.CrossRefGoogle Scholar
  10. 10.
    Aw, P.K., Tan, A.L.K., Tan, T.P., and Qiu, J.H., Corrosion resistance of tungsten carbide based cermet coatings deposited by high velocity oxy-fuel spray process, Thin Solid Films, 2008, vol. 516, pp. 5710–5715.CrossRefGoogle Scholar
  11. 11.
    Zhang, L., Chen, Y., Wan, Q.L., Liu, T., Zhu, J.F., and Tian W., Electrochemical corrosion behaviors of straight WC–Co alloys: Exclusive variation in grain sizes and aggressive media, Int. J. Refract. Met. Hard Mater., 2016, vol. 57, pp. 70–77.CrossRefGoogle Scholar
  12. 12.
    Kellner, F.J.J., Hildebrand, H., and Virtanen, S., Effect of WC grain size on the corrosion behavior of WC–Co based hardmetals in alkaline solutions, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 806–812.CrossRefGoogle Scholar
  13. 13.
    Li, S.X., He, Y.N., Yu, S.R., and Zhang, P.Y., Evaluation of the effect of grain size on chromium carbide precipitation and intergranular corrosion of 316 L stainless steel, Corros. Sci., 2013, vol. 66, pp. 211–216.CrossRefGoogle Scholar
  14. 14.
    Taleb, A. and Stafiej, J., Numerical simulation of the effect of grain size on corrosion processes: surface roughness oscillation and cluster detachment, Corros. Sci., 2011, vol. 53, pp. 2508–2513.CrossRefGoogle Scholar
  15. 15.
    Ralston, K.D., Fabijanic, D., and Birbilis, N., Effect of grain size on corrosion of high purity aluminium, Electrochim. Acta, 2011, vol. 56, pp. 1729–1736.CrossRefGoogle Scholar
  16. 16.
    Kellner, F.J.J., Killian, M.S., Yang, G., Spiecker, E., and Virtanen, S. V, TEM and ToF-SIMS studies on the corrosion behavior of vanadium and chromium containing WC–Co hard metals in alkaline solutions, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, pp. 376–383.CrossRefGoogle Scholar
  17. 17.
    Barbatti, C.F., Sket, F., Garcia, J., and Pyzalla, A., Influence of binder metal and surface treatment on the corrosion resistance of (W, Ti) C-based hardmetals, Surf. Coat. Technol., 2006, vol. 201, pp. 3314–3327.CrossRefGoogle Scholar
  18. 18.
    Hochstrasser(-Kurz), S., Mueller, Y., Latkoczy, C., Virtanen, S., and Schmutz, P., Analytical characterization of the corrosion mechanisms of WC–Co by electrochemical methods and inductively coupled plasma mass spectroscopy, Corros. Sci., 2007, vol. 49, pp. 2002–2020.CrossRefGoogle Scholar
  19. 19.
    Sutthiruangwong, S. and Mori, G., Corrosion properties of Co-based cemented carbides in acidic solutions, Int. J. Refract. Met. Hard Mater., 2003, vol. 21, pp. 135–145.CrossRefGoogle Scholar
  20. 20.
    Xiao, D.H., He, Y.H., Song, M., Lin, N., and Zhang, D.F: Y2O3- and NbC-doped ultrafine WC-10Co alloys by low pressure sintering, Int. J. Refract. Met. Hard Mater., 2010, vol. 28, pp. 407–411.CrossRefGoogle Scholar
  21. 21.
    Liu, S., Study on rare-earth doped cemented carbides in China, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 528–534.CrossRefGoogle Scholar
  22. 22.
    Konyashin, I., Hlawatschek, S., Ries, B., Lachmann, F., and Dorn, F., On the mechanism of WC coarsening in WC-Co hardmetals with various carbon contents, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 234–243.CrossRefGoogle Scholar
  23. 23.
    Choi, Y., Baik, N.I., Lee, J.S., Hong, S.I., and Hahn, Y.D., Corrosion and wear properties of TiC/Ni–Mo composites produced by direct consolidation during a self-propagating high-temperature reaction, Compos. Sci. Technol., 2001, vol. 61, pp. 9181–9186.CrossRefGoogle Scholar
  24. 24.
    Zhang, X.Z., Liu, G.W., Tao, J.N., Shao, H.C., Fu, H., Pan, T.Z., and Qiao, G.J., Vacuum brazing of WC-8Co cemented carbides to carbon steel using pure Cu and Ag-28Cu as filler metal, J. Mater. Eng. Perform., 2017, vol. 26, pp. 488–494.CrossRefGoogle Scholar
  25. 25.
    Sutthiruangwong, S., Mori, G., and Kosters, R., Passivity and pseudopassivity of cemented carbides, Int. J. Refract. Met. Hard Mater., 2005, vol. 23, pp. 129–136.CrossRefGoogle Scholar
  26. 26.
    Konadu, D.S., Merwe, J.V., Potgieter, J.H., Potgieter-Vermaak, S., and Machio, C.N., The corrosion behaviour of WC–VC–Co hardmetals in acidic media, Corros. Sci., 2010, vol. 52, pp. 3118–3125.CrossRefGoogle Scholar
  27. 27.
    Sohn, J.R. and Park, W.C., The roles of active sites of nickel sulfate supported on γ-Al2O3 for ethylene dimerization, Appl. Catal. A, 2003, vol. 239, pp. 269–278.CrossRefGoogle Scholar
  28. 28.
    Bozzini, B., Gaudenzi, G.P. D., Fanigliulo, A., and Mele, C., Anodic behaviour of WC–Co type hardmetal, Mater. Corros., 2003, vol. 54, pp. 295–303.CrossRefGoogle Scholar
  29. 29.
    Badawy, W.A., Al-Kharafi, F.M., and Al-Ajmi, J.R., Electrochemical behavior of cobalt in aqueous solutions of different pH, J. Appl. Electrochem., 2000, vol. 30, pp. 693–704.CrossRefGoogle Scholar
  30. 30.
    Lekatou, A., Zois, D., Karantzalis, A.E., and Grimanelis, D., Electrochemical behaviour of cermet coatings with a bond coat on Al7075: pseudopassivity, localized corrosion and galvanic effect considerations in a saline environment, Corros. Sci., 2010, vol. 52, pp. 2616–2635.CrossRefGoogle Scholar
  31. 31.
    Wank, A., Wielage, B., Pokhmurska, H., Friesen, E., and Reisen, G., Comparison of hardmetal and hard chromium coatings under different tribological conditions, Surf. Coat. Tech., 2006, vol. 201, pp. 1975–1980.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • Chao Liu
    • 1
    Email author
  • Yang Liu
    • 1
  • Yunzhu Ma
    • 1
  • Wensheng Liu
    • 1
  • Yuehui He
    • 1
  1. 1.State Key Laboratory of Lightweight and High Strength Structural MaterialsCentral South UniversityChangshaChina

Personalised recommendations