Journal of Superhard Materials

, Volume 41, Issue 5, pp 310–320 | Cite as

High Pressure Effects on Structural, Elastic and Thermodynamic Properties of Tantalum Mononitride

  • Jing ChangEmail author
  • Nina Ge
  • Ke Liu
  • Xu He
Production, Structure, Properties


The pressure effects on the structural, elastic and thermodynamic properties of tantalum mononitride in WC-type phase (i.e. WC–TaN) are investigated by the first-principles plane wave pseudo-potential density functional theory method and the quasi-harmonic Debye model. The obtained equilibrium structure parameters and ground state properties are in excellent agreement with the experimental and other theoretical results. The calculations of the phonon dispersion curve and the density of phonon states verify that the WC–TaN is dynamically stable. A full elastic tensor and anisotropies behavior of the WC–TaN is also evaluated and discussed in the wide pressure range. The results show that WC–TaN is elastic anisotropy and mechanically stable up to 100 GPa, and the compression along c-axis direction is more difficult than along a-axis. The obtained superior mechanical properties show that WC–TaN is a promising candidate structure to be one of the ultra-incompressible and hard materials. Finally, by using the quasi-harmonic approximation model, we predicted the thermodynamic properties of WC–TaN under pressure and temperature. The heat capacity CV, Debye temperature θ, the thermal expansion α and the Grüneisen constant γ are obtained successfully in the ranges of 0–100 GPa and 0–2000 K.


structural properties elastic properties thermodynamic properties first-principles high pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant No. 11304211 and 11504304), the Construction Plan for Scientific research Innovation Team of Universities in Sichuan Province (No. 12TD008), the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (Grant No. 15zxfk08).


  1. 1.
    Liu, A.Y. and Cohen, M.L., Prediction of new low compressibility solids, Science, 1989, vol. 245, pp. 841–842.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    He, J.L., Guo, L.C., Yu, D.L., Liu, R.P., Tian, Y.J. and Wang, H.T., Hardness of cubic spinel Si3N4, Appl. Phys. Lett., 2004, vol. 85, pp. 5571–5573.CrossRefGoogle Scholar
  3. 3.
    Occelli, F., Loubeyre, P., and Toullec, R.L., Properties of diamond under hydrostatic pressures up to 140 GPa, Nat. Mater., 2003, vol. 2, pp. 151–154.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Chung, H.Y., Weinberger, M.B., Levine, J.B., Kavner, A., Yang J,M., Tolbert, S.H., and Kaner, R.B., Synthesis of Ultra-incompressible superhard rhenium diboride at ambient pressure, Science, 2007, vol. 316, pp. 436–439.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Liang, Y., Li, C., Guo, W., and Zhang, W., First-principles investigation of technetium carbides and nitrides, Phys. Rev. B, 2009, vol. 79, pp. 024111–024115.CrossRefGoogle Scholar
  6. 6.
    Christensen, A.N. and Lebech, B., A reinvestigation of the structure of ε-tantalum nitride, Acta Crystallogr. B, 1978, vol. 34, pp. 261–263.CrossRefGoogle Scholar
  7. 7.
    Brauer, G., Mohr, E., Neuhaus, A., and Skokan, A., ϑ-TaN, eine hochdruckform von tantalnitrid, Monatsh. Chem., 1972, vol. 103, pp. 794–798.CrossRefGoogle Scholar
  8. 8.
    Ensinger, W., Kiuchi, M., and Satou, M., Low-temperature formation of metastable cubic tantalum nitride by metal condensation under ion irradiation, J. Appl. Phys., 1995, vol. 77, pp. 6630–6636.CrossRefGoogle Scholar
  9. 9.
    Kim, T.E., Han, S., Son, W.J., Cho, E., Ahn, H.S., and Shin, S., Phase stability and electronic structures of stoichiometric tantalum mononitrides, Comput. Mater. Sci., 2008, vol. 44, pp. 577–580.CrossRefGoogle Scholar
  10. 10.
    Yan, H.Y., Dou, C.S., Zhang, M.G., and Wang, H., Hexagonal high-pressure phase of tantalum mononitride predicted from first principles, J. Appl. Phys., 2013, vol. 113, pp. 083502.CrossRefGoogle Scholar
  11. 11.
    Isaev, E.I., Simakm, S.I., Abrikosov, I.A., Ahuja, R., Vekilov, Yu. Kh., Katsnelson, M.I., Lichtenstein, A.I., and Johansson, B., Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study, J. Appl. Phys., 2007, vol. 101, pp. 123519.CrossRefGoogle Scholar
  12. 12.
    Friedrich, A., Morgenroth, W., Bayarjargal, L., Juarez-Arellano, E. A., Winkler, B., and Konôpková, Z., In situ study of the high pressure high-temperature stability field of TaN and of the compressibilities of ϑ-TaN and TaON, High Press. Res., 2013, vol. 33, pp. 633–641.CrossRefGoogle Scholar
  13. 13.
    Zhao, E.J. and Wu, Z.J., Electronic and mechanical properties of 5d transition metal mononitrides via first principles, Solid State. Chem., 2008, vol. 181, pp. 2814–2827.CrossRefGoogle Scholar
  14. 14.
    Li, D., Tian, F.B., Duan, D.F., Duan, D.F., Bao, K., Chu, B.H., Sha, X,J., Liu, B.B., and Cui, T., Mechanical and metallic properties of tantalum nitrides from first-principles calculations, RSC Adv., 2014, vol. 4, pp. 10133–10139.CrossRefGoogle Scholar
  15. 15.
    Hitoshi, Y., Fumio, K., Takashi, T., Naohisa, H., Yasuo, O., and Takumi K., High-pressure synthesis and compressive behavior of tantalum nitride, J. Appl. Phys., 2014, vol. 115, pp. 103520.CrossRefGoogle Scholar
  16. 16.
    Weng, H., Fang, C., Fang, Z., and Dai, X., Topological semimetals with triply degenerate nodal points in θ-phase tantalum nitride, Phys. Rev. B, 2016, vol. 93, pp. 241202.CrossRefGoogle Scholar
  17. 17.
    Zhao, E.J., Hong, B., Meng, J., and Wu, Z.J., First principles investigation on the ultra-incompressible and hard TaN, J. Comput. Chem., 2009, vol. 30, pp. 2358–2363.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Cao, C.L., Hou, Z.F., and Yuan, G., First-principles study of the structural stability and electronic structures of TaN, Phys. Stat. Sol., 2008, vol. 8, 1580–1585.CrossRefGoogle Scholar
  19. 19.
    Li, J.F., Wang, X.L., Liu, K., Li, D.Y., and Chen, L., Crystal structures, mechanical and electronic properties of tantalum monocarbide and mononitride, J. Superhard Mater., 2011, vol. 33, pp. 173–178.CrossRefGoogle Scholar
  20. 20.
    Ren, F.Z. and Wang, Y.X., Pressure-induced phase transition of tantalum mononitride, Thin Solid. Films, 2011, vol. 519, pp. 3954–3958.CrossRefGoogle Scholar
  21. 21.
    Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C., First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter., 2002, vol. 14, pp. 2717–2744.CrossRefGoogle Scholar
  22. 22.
    Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 1990, vol. 41, pp. 7892–7895.CrossRefGoogle Scholar
  23. 23.
    Vosko, S.H., Wilk, L., and Nussair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys., 1980, vol. 58, pp. 1200–1211.CrossRefGoogle Scholar
  24. 24.
    Pfrommer, B.G., Côté, M., Louie, S.G., and Cohen, M.L., Relaxation of crystals with the Quasi-Newton method, J. Comp. Physiol., 1997, vol. 131, pp. 233–240.CrossRefGoogle Scholar
  25. 25.
    Christopoulos, S.R., Filippatos, P.P., Hadi, M.A., Kelaidis, N., Fitzpatrick, M.E., and Chroneos, A., Intrinsic defect processes and elastic properties of Ti3AC2 (A = Al, Si, Ga, Ge, In, Sn) MAX phases, J. Appl. Phys., 2018, vol. 123, pp. 025103.CrossRefGoogle Scholar
  26. 26.
    Wang, P., Kumar, R., Sankaran, E.M., Qi, X.T, Zhang, X.Y, Popov, D., Cornelius, A.L., Li, B.S., Zhao, Y.S., and Wang, L.P., Vanadium diboride (VB2) synthesized at high pressure: elastic, mechanical, electronic, and magnetic properties and thermal stability, Inorganic Chem., 2018, vol. 57, pp. 1096–1105.CrossRefGoogle Scholar
  27. 27.
    Wang, J., Yip, S., Phillpot, S.R., and Wolf, D., Mechanical instabilities of homogeneous crystals, Phys. Rev. B, 1995, vol. 52, pp. 12627–12635.CrossRefGoogle Scholar
  28. 28.
    Wallace, D.C., Thermodynamics of Crystals, New York: Wiley, 1972.CrossRefGoogle Scholar
  29. 29.
    Karki, B.B., Ackland, G.J., and Crain, J., Elastic instabilities in crystals from ab initio stress-strain relations, J. Phys. Condens Matter, 1997, vol. 9, pp. 8579–8589.CrossRefGoogle Scholar
  30. 30.
    Barron, T.H.K. and Klein, M.L., Second-order elastic constants of a solid under stress, Proc. Phys. Soc., 1965, vol. 85, pp. 523–532.CrossRefGoogle Scholar
  31. 31.
    Blanco, M.A., Francisco, E., and Luana, Y, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun., 2004, vol. 158, pp. 57–72.CrossRefGoogle Scholar
  32. 32.
    Liu, K., He, D.W., Zhou, X.L., Wang, H.M., Lu, T.C., and Chang, J., Method of preparation and thermodynamic properties of transparent Y3Al5O12 nanoceramics, J. Therm. Anal. Calorim., 2013, vol. 111, pp. 289–294.CrossRefGoogle Scholar
  33. 33.
    Gao, X., Zhou, M., Cheng, Y., and Ji, G., First-principles study of structural, elastic, electronic and thermodynamic properties of topological insulator Bi2Se3 under pressure, Philos. Mag., 2016, vol. 96, pp. 208–222.CrossRefGoogle Scholar
  34. 34.
    Blanco, M.A., Pendás, A.M., Francisco, E., Recio, J.M., and Franco, R., Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3, J. Mol. Struct. (Theochem.), 1996, vol. 368, pp. 245–255.CrossRefGoogle Scholar
  35. 35.
    Flórez, M., Recio, J.M., Francisco, E., Blanco, M.A., and Pendás, A.M., First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides, Phys. Rev. B, 2002, vol. 66, pp. 144112–144120.CrossRefGoogle Scholar
  36. 36.
    Mashimo, T. and Tashiro, S., Synthesis of the WC-type tantalum nitride by mechanical alloying, J. Mater. Sci. Lett., 1994, vol. 13, pp. 174–176.CrossRefGoogle Scholar
  37. 37.
    Mashimo, T., Tashiro, S., Nishida, M., Miyahara, K., and Eto, E., B1-type and WC-type phase bulk bodies of tantalum nitride prepared by shock and static compressions, Physica B, 1997, vol. 239, pp. 13–15.CrossRefGoogle Scholar
  38. 38.
    Birch, F., Finite elastic strain of cubic crystals, Phys. Rev., 1947, vol. 71, pp. 809–824.CrossRefGoogle Scholar
  39. 39.
    Wang, Y.X., Elastic and electronic properties of TcB2 and superhard ReB2: First-principles calculations, Appl. Phys. Lett., 2007, vol. 91, pp. 101904–101907.CrossRefGoogle Scholar
  40. 40.
    Wang, Y.X., Arai, M., and Sasaki, T., Marcasite osmium nitride with high bulk modulus: First-principles calculations, Appl Phys Lett, 2007, vol. 90, pp. 061922–061925.CrossRefGoogle Scholar
  41. 41.
    Wu, Z.J., Zhao, E.J., Xiang, H.P., Hao, X.F., Liu, X.J., and Meng, J., Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B, 2007, vol. 76, pp. 054115–054130.CrossRefGoogle Scholar
  42. 42.
    Yu, R., Zhan, Q., and Zhang, X.F., Elastic stability and electronic structure of pyrite type PtN2: A hard semiconductor, Appl. Phys. Lett., 2006, vol. 88, pp. 051913–051916.CrossRefGoogle Scholar
  43. 43.
    Liang, Y.C. and Zhang, B., Mechanical and electronic properties of superhard ReB2, Phys. Rev. B, 2007, vol. 76, pp. 132101–132105.CrossRefGoogle Scholar
  44. 44.
    Smirnov, N.A., Ab initio calculations of the thermodynamic properties of LiF crystal, Phys. Rev. B, 2011, vol. 83, pp. 014109–014113.CrossRefGoogle Scholar
  45. 45.
    Poirier, J. P., Introduction to the Physics of the Earth’s Interior, Cambridge University Press, New York, 1991.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.College of Physics and Electronic EngineeringSichuan Normal UniversityChengduChina
  2. 2.State Key Laboratory Cultivation Base for Nonmetal Composites and Functional MaterialsSouthwest University of Science and TechnologyMianyangChina
  3. 3.Chengdu Textile CollegeChengduChina

Personalised recommendations