Journal of Superhard Materials

, Volume 40, Issue 6, pp 424–431 | Cite as

Promising Types of Coatings for PCBN Tools

  • A. S. Manokhin
  • S. A. Klimenko
  • S. An. Klimenko
  • V. M. Beresnev
Tools, Powders, Pastes


The paper reviews the present-day trends in the development of new types of wear-resistant coatings, including nanostructured ones, for PCBN tools. The main currently pursued approaches to creation of high-hardness nanostructured coatings are discussed. Based on the analysis of wear behavior of PCBN tools, some new approaches to the development of promising wear-resistant coating systems have been identified, namely: (i) selecting the structural components of a coating, which should act as a hard grease to effectively reduce the tool wear rate; (ii) adding the compounds that inhibit any chemical reactions in the cutting zone; (iii) reducing the friction coefficient and contact loads through the use of solid lubricants and running-in layers of a coating; (iv) providing a coating with the required structural state.


wear-resistant coatings PCBN coating application turning tool wear 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Fatih, T., Çolak, O, Kayacan, M., Investigation of TiN coated CBN and CBN cutting tool performance in hard milling application, Strojniški vestnik–J. Mechan. Eng., 2011, vol. 57, no. 5, pp. 417–424.CrossRefGoogle Scholar
  5. 5.
    de Siqueira, G.G., Stipkovic, F.M., and Ferreira, B.G., Hard turning of tempered DIN 100Cr6 steel with coated and no-coated CBN inserts, J. Mater. Proc. Technol., 2006, vol. 179, pp. 146–153.CrossRefGoogle Scholar
  6. 6.
    Coelho, R.T., Ng, E.G., and Elbestawi, M.A., Tool wear when turning hardened AISI 4340 with coated PCBN tools using finishing cutting conditions, Int. J. Machine Tools Manufact., 2007, vol. 47, pp. 263–272.CrossRefGoogle Scholar
  7. 7.
    M’Saoubi, R., Johansson, M.P., and Andersson, J.M., Wear mechanisms of PVD-coated PCBN cutting tools, Wear, 2013, vol. 302, no. 1–2, pp. 1219–1229.CrossRefGoogle Scholar
  8. 8.
    Wada, T. and Hanyu, H., Tool wear of (Ti, Al) N-coated polycrystalline cubic boron nitride compact in cutting of hardened steel, IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 264, pp. 1–8.CrossRefGoogle Scholar
  9. 9.
    Veprek, S., Veprek-Heijman, M., Karvankova, P., and Prochazka, J., Different approaches to superhard coatings and nanocomposites, Thin Solid Films, 2005, vol. 476, pp. 1–29.CrossRefGoogle Scholar
  10. 10.
    Veprek, S. and Argon, A.S., Towards the understanding of mechanical properties of super- and ultrahard nanocomposites, J. Vac. Sci. Technol. B, 2002, vol. 20, no. 2, pp. 650–664.CrossRefGoogle Scholar
  11. 11.
    Beresnev, V.M., Sobol', O.V., Pogrebnyak, A.D., et al., Structure and properties of TiAlSiY coatings applied by vacuum-arc deposition in nitrogen atmosphere, Fiz. Khim. Obrab. Mater., 2017, no. 2, pp. 34–43.Google Scholar
  12. 12.
    Musil, J., Physical and mechanical properties of hard nanocomposite films prepared by reactive magnetron sputtering, in Cavaleiro, A. and de Hosson, J.T.M. (Eds.), Nanostructured Coatings. Nanostructure Science and Technology, New York: Springer, 2006.Google Scholar
  13. 13.
    Azarenkov, N.A., Beresnev, V.M., Pogrebnyak, A.D., and Kolesnikov, D.A., Nanostrukturnye pokrytiya i nanomaterialy. Osnovy polucheniya. Svoistva. Oblasti primeneniya. Osobennosti sovremennogo nanostrukturnogo napravleniya v nanotekhnologii (Nanostructured Coatings and Nanomaterials. Fundamentals of Production. Properties. Applications. Special Features of Present-Day Nanostructure Tendency in Nanotechnology), Moscow: LIBROKOM, 2012.Google Scholar
  14. 14.
    Münz, W.D., Smitho, I.J., Schönjahn, C., Deeming, A.P., and Clapham, S., PVD superlattice structured hard coatings designed for dry high speed machining, in II Int. Seminar on Improving Machining Tool Performance, 2000. (27.10.2016).Google Scholar
  15. 15.
    Grankin, S.S., Phase Composition and Physical-Mechanical Properties of Nanostructured Composite Coatings Based on Nitrides of Refractory Metals, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Kharkiv, 2016.Google Scholar
  16. 16.
  17. 17.
  18. 18.
    Patscheider, J., Nanocomposite hard coatings for wear protection, MRS Bulletin, 2003, vol. 28, pp. 180–183.CrossRefGoogle Scholar
  19. 19.
    Chim, Y.C., Ding, X.Z., Zeng, X.T., and Zhang, S., Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc, Thin Solid Films, 2009, vol. 517, pp. 4845–4849.CrossRefGoogle Scholar
  20. 20.
    Reshetnyak, O.M. and Strel’nitskii, O.M., Synthesis of hardening nanostructured coatings, Vopr. Atom. Nauk. Tekhn., 2008, no. 2, pp. 119–130.Google Scholar
  21. 21.
    Veprek, S., Maritz, G., and Veprek-Heijman, J., Concept for the design of superhard nanocomposites with high thermal stability: their preparation, properties, and industrial applications, in Cavaleiro, A. and de Hosson, J.T.M. (Eds.), Nanostructured Coatings. Nanostructure Science and Technology, New York: Springer, 2007, pp. 347–406.Google Scholar
  22. 22.
    Beresnev, V.M., Pogrebnyak, A.D., Azarenkov, N.A., Farenik, V.I., and Kirik, G.V., Nanocrystalline and nanocomposite coatings, structure, properties, Fiz. Inzh. Poverkhn., 2007, vol. 5, no. 1–2, pp. 4–27.Google Scholar
  23. 23.
    Zeman, P., Musil, J., and Daniel, R., High-temperature oxidation resistance of Ta–Si–N films with a high Si content, Surf. Coat. Technol., 2006, vol. 200, pp. 4091–4096.CrossRefGoogle Scholar
  24. 24.
    Podchernyaeva, I.A., Klimenko, S.A., Beresnev, V.M., Panashenko, V.M., Toryanik, I.N., Klimenko, S.An., and Kopeikina, M.Yu., Formation of a tribofilm in the surface layer of Al–Ti–Cr–N–B magnetron coating on boron nitride during turning of hardened steel, Powder Metall. Metal Ceram., 2015, vol. 54, no. 3/4, pp. 140–150.CrossRefGoogle Scholar
  25. 25.
    Klimenko, S.A., Klimenko, S.An., Manokhin, A.S., and Beresnev, V.M., Special features of the applications of cutting tools from polycrystalline cubic boron nitride with protective coatings, J. Superhard Mater., 2017, vol. 39, no. 4, pp. 288–297.CrossRefGoogle Scholar
  26. 26.
    Kopeikinalimenko, S.A., Mel’niichuk, Yu.A., and Beresnev, V.M., Efficiency of cutting tools equipped with cBN-based polycrystalline superhard materials having vacuum–plasma coating, J. Superhard Mater., 2008, vol. 30, no. 5, pp. 355–362.CrossRefGoogle Scholar
  27. 27.
    Turkevich, V.Z., Klimenko, S.A., and Kulik, O.G., Termodynamics of the interaction in the CBN-based tool material–Fe(Ni) system, Transactions FMI, 1999, vol. XXVIII, no. 2, pp. 8–11.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. S. Manokhin
    • 1
  • S. A. Klimenko
    • 1
  • S. An. Klimenko
    • 1
  • V. M. Beresnev
    • 2
  1. 1.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Karazin Kharkiv National University, Ministry of Education and Science of UkraineKharkivUkraine

Personalised recommendations