Journal of Superhard Materials

, Volume 40, Issue 6, pp 402–413 | Cite as

The Influence of Machining Conditions on Performance of Diamond Grinding of Silicon Carbide Ceramic Balls

  • S. V. Sokhan’Email author
  • A. L. Maistrenko
  • V. G. Sorochenko
  • V. V. Voznyi
  • V. G. Kulych
  • M. P. Gamanyuk
  • E. M. Zubanev
Investigation of Machining Processes


The paper presents some results of an experimental investigation of the influence of machining conditions on the process of diamond grinding of silicon carbide ceramic balls. The process performance parameters are the rate of the ball diameter reduction, the rate of change (decreasing/increasing) of the deviation from spherical form, and the rate of change of the variation of ball lot diameter. To separate the portion due to solely the influence of the machining conditions, the authors have applied a method of graphical approximation of the time behavior of mean value of ball accuracy characteristics per batch. It has been found out that the separated portions can change upwards or downwards depending on the values of the machining conditions, namely: diamond wheel infeed, wheel feed rate, and ball-holder table rotational speed. The full factorial experiments of type 23 have revealed the most effective (for correcting the ball shape) combination of the factors studied, which is different for each of the three ranges of such deviation: above 300 μm, within 150–300 μm, and below 150 μm.


silicon carbide ceramic balls diamond grinding diamond wheel infeed wheel feed rate ball-holder table rotational speed ball diameter and deviation from spherical form variation of ball lot diameter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Novikov, N.V. (Ed.), Sverkhtverdye materially: Poluchenie i primenenie (Superhard Materials. Production and Applications), 6 Volumes. Volume 6. Almazno-abrazivnyi instrument v tekhnologiyakh mechanoobrabotki (Diamond Abrasive Tools in Machining Technologies), Kyiv: Bakul Institute for Superhard Materials, National Academy of Sciences of Ukraine, 2007.Google Scholar
  3. 3.
    Posichnyi, O.O., Increasing Efficiency of Precision Diamond Machining of Ball Type Workpieces of Structural Ceramics. Extended Abstract of Cand. Sci. (Eng.) Dissertation, Kyiv, 2002.Google Scholar
  4. 4.
  5. 5.
    Feng, M., Wu, Y., Yuan, J., and Ping, Zh., Processing of high-precision ceramic balls with a spiral V-groove plate, Front. Mech. Eng., 2017, vol. 12, no. 1, pp. 132–142.CrossRefGoogle Scholar
  6. 6.
    Zhou, F., Yuan, J., Lyu, B., Yao, W., and Zhao, P. Kinematics and trajectory in processing precision balls with eccentric plate and variable-radius V-groove, Int. J. Adv. Manuf. Tech., 2016, vol. 84, no. 9, pp. 2167–2178.CrossRefGoogle Scholar
  7. 7.
    Ma, W., High efficiency ultra-precision grinding of ceramic balls: Dissertation for the Doctoral Degree, Saga: Saga University, 2013.Google Scholar
  8. 8.
    Filatov, Yu.D., Vetrov, A.G., Sidorko, V.I., Filatov, O.Yu., and Kovalev, S.V., A mechanism of diamond-abrasive finishing of monocrystalline silicon carbide, J. Superhard Mater., 2013, vol. 35, no. 5, pp. 303–308.CrossRefGoogle Scholar
  9. 9.
    Filatov, Yu.D., Vetrov, A.G., Sidorko, V.I., Filatov, O.Yu., Kovalev, S.V., Kurilovich, V.D., Danil’chenko, M.A., Prikhna, T.A., Borimskii, A.I., Kutsai, A.M., and Poltoratskii, V.G., Polishing of optoelectronic components of monocrystalline silicon carbide, J. Superhard Mater., 2015, vol. 37, no. 1, pp. 48–56.CrossRefGoogle Scholar
  10. 10.
    Prikhna, T.A., Starostina, A.V., Lizkendorf, D., Petrusha, I.A., Ivakhnenko, S.A., Borimskii, A.I., Filatov, Yu.D., Loshak, M.G., Serga, M.A., Tkach, V.N., Turkevich, V.Z., Sverdun, V. B., Klimenko, S.A., Turkevich, D.V., Dub, S.N., Basyuk, T.V., Karpets, M.V., Moshchil, V.E., Kozyrev, A.V., Il’nitskaya, G.D., Kovylyaev, V.V., Cabiosh, T., and Chartier, P., Studies of the oxidation stability, mechanical characteristics of materials based on MAX phases of the Ti–Al–(C, N) systems, and of the possibility of their use as tool bonds and materials for polishing, J. Superhard Mater., 2014, vol. 36, no. 1, pp. 9–17.CrossRefGoogle Scholar
  11. 11.
    Gusev, V.V. and Kalafatova, L.P., Tekhnologicheskoe obespechenie kachestva obrabotki izdeliy iz tekhnicheskoy keramiki: monografiya (Technological Support to Ensure Machining Quality for Engineering Ceramic Articles. Monograph), Donetsk: DonNTU, 2012.Google Scholar
  12. 12.
    Filatov, Yu.D. and Rogov, V.V., A cluster model of fatigue wear mechanism of SiO2-containing materials in polishing with tools containing bound ceria-based polishing powders. Part 1, Sverkhtverdye Materialy, 1994, no. 3, pp. 40–43 [J. Superhard Mater., 1994, no. 3].Google Scholar
  13. 13.
    Filatov, Yu.D., A mechanism of microrelief formation in polishing glass, Sverkhtverdye Materialy, 1991, no. 5, pp. 61–65 [J. Superhard Mater., 1991, no. 5].Google Scholar
  14. 14.
    Morozov, E.M. and Zernin, M.V., Kontaktnye zadachi mekhaniki razrusheniya (Contact Problems of Fracture Mechanics), Moscow: Mashinostroenie, 1999.Google Scholar
  15. 15.
    Maystrenko, A.L., Kulich, V.G., and Tkach, V.N., Formation of high-density structure of self-bonded silicon carbide, J. Superhard Mater., 2009, vol. 31, no. 1, pp. 12–23.CrossRefGoogle Scholar
  16. 16.
    Sokhan, S.V., Maystrenko, A.L., Kulich, V.H., Sorochenko, V.H., Voznyy, V.V., Gamaniuk, M.P., and Zubaniev, Ye.M., Diamond grinding the ceramic balls from silicon carbide, J. Eng. Sci., 2018, vol. 5, no. 1, pp. A12–A20.Google Scholar
  17. 17.
    Kononyuk, A.E., Osnovy nauchnykh issledovaniy (Obshchaya teoriya eksperimenta). V 4 tomakh. T. 2 (Basics of Scientific Research (General Theory of Experiment)), 4 Volumes. Volume 2, Kiev: Izd. KNT, 2011.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. V. Sokhan’
    • 1
    Email author
  • A. L. Maistrenko
    • 1
  • V. G. Sorochenko
    • 1
  • V. V. Voznyi
    • 1
  • V. G. Kulych
    • 1
  • M. P. Gamanyuk
    • 1
  • E. M. Zubanev
    • 1
  1. 1.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations