Advertisement

Journal of Superhard Materials

, Volume 40, Issue 6, pp 392–395 | Cite as

Chemical Synthesis of Niobium Diboride Nanosheets by a Solid-State Reaction Route

  • Liangbiao WangEmail author
  • Qianli Shen
  • Hengfei Qin
  • Dejian Zhao
  • Weiqiao Liu
  • Jianhua Sun
  • Binglong Zhu
  • Quanfa Zhou
Production, Structure, Properties
  • 6 Downloads

Abstract

A new process was developed to synthesize niobium diboride (NbB2) nanosheets with the dimension of about 500 nm and thickness of about 10 nm by using metal niobium, iodine and sodium borohydride as starting materials in an stainless steel autoclave at 700°C. Iodine was used to facilitate the exothermic reaction between metal niobium and sodium borohydride and the formation of NbB2. X-ray powder diffraction pattern indicated that the obtained product is hexagonal phase NbB2 with the calculated lattice constants a = 110 Å and c = 3.2929 Å. The obtained product was also studied by thermogravimetric analysis. It had good oxidation resistance below 400°C in air.

Keywords

solid state route X-ray diffraction niobium diboride nanosheets chemical synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ucisik, A.H., and Bindal, C., Fracture toughness of boride formed on low-alloy steels, Surf. Coat. Technol., 1997, vol. 94–95, pp. 561–565.CrossRefGoogle Scholar
  2. 2.
    Otani, S., Korsukova, M.M., and Mitsuhashi, T., Floating zone growth and high-temperature hardness of NbB2 and TaB2 single crystals, J. Cryst. Growth, 1998, vol. 3–4, pp. 430–433.CrossRefGoogle Scholar
  3. 3.
    Adams, R. M., Boron, metallo-boron compounds and boranes, New York: Interscience, 1964.Google Scholar
  4. 4.
    Samsonov, G.V., and Vinitskii, I.M., Handbook of refractory compounds, New York: Plenum Press, 1980.CrossRefGoogle Scholar
  5. 5.
    Yamamoto, A., Takao, C., Masui, T., Izumi, M., and Tajima, S., High-pressure synthesis of superconducting Nb1–xB2(x = 0–0.48) with the maximum Tc = 9.2 K, Physica C, 2002, vol. 383, pp. 197–206.CrossRefGoogle Scholar
  6. 6.
    Maeda, H., Yoshikawa, T., Kusakabe, K., and Morooka, S., Synthesis of ultrafine NbB2 powder by rapid carbothermal reduction in a vertical tubular reactor, J. Alloys Compd., 1994, vol. 215, pp. 127–134.CrossRefGoogle Scholar
  7. 7.
    Peshev, P., Leyarovska, L., and Bliznakov, G., On the borothermic preparation of some vanadium, niobium and tantalum borides, J. Less. Common. Metals, 1968, vol. 15, pp. 259–267.CrossRefGoogle Scholar
  8. 8.
    Jha, M., Ramanujachary, K.V., Lofland, S.E., Gupta, G., and Ganguli, A.K., Novel borothermal process for the synthesis of nanocrystalline oxides and borides of niobium, Dalton Trans., 2011, vol. 40, pp. 7879–7888.CrossRefGoogle Scholar
  9. 9.
    Jin, S., Shen, P., Li, Y., Zhou, D., and Jiang, Q. Synthesis of spherical NbB2–x particles by controlling the stoichiometry, Cryst. Eng. Comm., 2012, vol. 14, pp. 1925–1928.CrossRefGoogle Scholar
  10. 10.
    Iizumi, K., Sekiya, C., Okada, S., Kudou, K., and Shishido, T., Mechanochemically assisted preparation of NbB2powder, J. Eur. Ceram. Soc., 2006, vol. 26, pp. 635–638.CrossRefGoogle Scholar
  11. 11.
    Matsudaira, T., Itoh, H., Naka, S., and Hamamoto, H., Synthesis of niobium boride powder by solid state reaction between niobium and amorphous boron, J. Less Common Metal, 1989, vol. 155, pp. 207–214.CrossRefGoogle Scholar
  12. 12.
    Cai, P. J., Yang, Z. H., Shi, L., Chen, L. Y., Zhao, A. W., Gu, Y. L., and Qian, Y. T., Low temperature synthesis of NbB2 nanorods by a solid-state reaction route, Mater. Lett., 2005, vol. 59, pp. 3550–3552.CrossRefGoogle Scholar
  13. 13.
    Ran, S. L., Sun, H. F., Wei, Y. N., Wang, D. W., Zhou, N. M., and Huang, Q., Low-temperature synthesis of nano-crystalline NbB2 powders by borothermal reduction in molten salt, J. Am. Ceram. Soc., 2014, vol. 97, pp. 3384–3387.CrossRefGoogle Scholar
  14. 14.
    Portehault, D., Devi, S., Beaunier, P., Gervais, C., Giordano, C., Sanchez, C., and Antonietti, M., A general solution route toward metal boride nanocrystals, Angew. Chem. Int. Ed., 2011, vol. 50, pp. 3262–3265.CrossRefGoogle Scholar
  15. 15.
    Jafari, M., Tajizadegan, H., Golabgir, M. H., Chami, A., and Torabi, O., Investigation on mechanochemical behavior of Al/Mg–B2O3–Nb system reactive mixtures to synthesize niobium diboride, Int. J. Refract. Met. Hard Mater., 2015, vol. 50, pp. 86–92.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Liangbiao Wang
    • 1
  • Qianli Shen
    • 1
  • Hengfei Qin
    • 1
  • Dejian Zhao
    • 1
  • Weiqiao Liu
    • 1
  • Jianhua Sun
    • 1
  • Binglong Zhu
    • 1
  • Quanfa Zhou
    • 1
  1. 1.Jiangsu Key Laboratory of Precious Metals Chemistry and Engineering, School of Chemistry and Environment EngineeringJiangsu University of TechnologyChangzhouP. R. China

Personalised recommendations