Advertisement

Journal of Superhard Materials

, Volume 40, Issue 5, pp 325–334 | Cite as

Production of Polycrystalline Materials by Sintering of Nanodispersed Diamond Nanopowders at High Pressure. Review

  • O. O. BochechkaEmail author
Production, Structure, Properties
  • 11 Downloads

Abstract

The investigations dealing with the problems of forming polycrystalline materials with a high level of physical-and-mechanical properties using the method of diamond powder sintering at high pressure have been considered. The compacting mechanism of diamond nanopowders of different genesis under exposure to high pressure and high temperature is described, special features of pore structure formations are considered, and the critical role of the specified factor in sintering is shown. The need of degassing and modification of the diamond particle surface during the preparation for sintering is noted. The effectiveness of tungsten and its compounds is shown as an activating addition for producing wear-resistant thermostable diamond nanocomposites.

Keywords

diamond nanopowders high pressure sintering nanopowders of tungsten and its compounds diamond nanocomposites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sidorenko, S.I., Makogon, Yu.M., and Voloshko, S.M., Materialoznavstvo tonkoplivkovykh nanostruktur. Dyfuziia i reaktsii (Materiology of Thin–Film Nanostructures. Diffusion and Reactions), Kyiv: Naukova Dumka, 2000.Google Scholar
  2. 2.
    Trefilov, V.I., Mil’man, Yu.V., and Firstov, S.A., Fizicheskie osnovy prochnosti tugoplavkikh metallov (Physical Principles of the Refractory Metal Strength), Kiev: Naukova Dumka, 1975.Google Scholar
  3. 3.
    Trefilov, V.I. and Mil’man, Yu.V., The impact of the Structural State and Temperature on Mechanical Properties of Superhard Materials, Superhard Materials: Synthesis, Properties, and Application: Reports of Intern. Workshop, Kiev: Naukova Dumka, 1983, pp. 81–86.Google Scholar
  4. 4.
    Andrievskii, R.A. and Spivak, I.I., Prochnost’ tugoplavkikh soedinenii i materialov na ikh osnove (Strength of High–Melting Compounds and Materials Based on Such Compounds), Chelyabinsk: Metallurgiya, 1989.Google Scholar
  5. 5.
    Larikov, L.N., Diffusion Processes in Nanocrystalline Materials, Metallofizika i Noveishie Tekhnologii, 1995, vol. 17, no. 1, pp. 3–29.Google Scholar
  6. 6.
    Larikov, L.N., Nanocrystalline Compounds of Metals, Metallofizika i Noveishie Tekhnologii, 1995, vol. 17, no. 9, pp. 56–68.Google Scholar
  7. 7.
    Gusev, A.I., Nanokristallicheskie materialy: metody polucheniya i svoistva (Nanocrystalline Materials: Production Methods and Properties), Yekaterinburg: UrO RAN, 1998.Google Scholar
  8. 8.
    Skorokhod, V.V., Some Problems of the Nanocrystalline Material Technology, Investigations of the Structure and Properties of Nanocrystalline Materials, Nanokristallicheskie Materialy, Kiev: IPM NAN Ukrainy, 1998, pp. 4–13.Google Scholar
  9. 9.
    Gusev, A.I., Effects of Nanocrystalline State in Compact Metals and Compounds, Uspekhi Fizicheskikh Nauk, 1998, vol. 168, no. 1, pp. 56–83.CrossRefGoogle Scholar
  10. 10.
    Alyamovskii, S.I., Zainulin, Yu.G., and Shveikin, G.P., Oksikarbidy i oksinitridy metallov IVA i VA podgrup (Oxycarbides and Oxynitrides of Metals from IVA and VA Subgroups), Moscow: Nauka, 1981.Google Scholar
  11. 11.
    Siegel, R.W. and Fougere, G.E., Mechanical Properties of Nanophase Metals, Nanostruct. Mater., 1995, vol. 6, no. 1–4, pp. 205–216.Google Scholar
  12. 12.
    Noskova, N.I., Ponomareva, E.G., Pereturina, I.A., and Kuznetsov, V.N., Strength and Plasticity of Pd–Cu–Si Alloy in Amorphous and Nanocrystalline States, Fizika Metallov i Metallovedenie, 1996, vol. 81, issue 1, pp. 163–170.Google Scholar
  13. 13.
    Suryanarayana, C., Mukhopadhyay, D., Patankar, S.N., and Froes, F.H., Grain Size Effects in Nanocrystalline Materials, J. Mater. Res., 1992, vol. 7, no. 8, pp. 2114–2118.CrossRefGoogle Scholar
  14. 14.
    DeCarli, P.S. and Jamieson, J.C., Formation of Diamond by Explosive Shock, Science, 1961, vol. 133, no. 3467, pp. 1821–1822.CrossRefGoogle Scholar
  15. 15.
    Trueb, L.F., Microstructural Study of Diamonds Synthesized under Conditions of High Temperature and Moderate Explosive Shock Pressure, J. Appl. Phys., 1971, vol. 42, no. 2, pp. 503–510.CrossRefGoogle Scholar
  16. 16.
    Savvakin, G.I., Ostrovskaya, N.R., and Oleinik, G.S., The Impact of Strongly Nonequilibrium Conditions of Dynamic Processing on the Structure of Diamond Powders, Poroshk. Metallurgiya, 1985, no. 4, pp. 78–83.Google Scholar
  17. 17.
    Gubin, S.A., Odintsov, V.V., and Pepekin, V.I., The Diagram of Carbon Phase States and its Use in Calculations of Detonation Parameters, Khimicheskaya Fizika, 1986, vol. 5, no. 1, pp. 111–120.Google Scholar
  18. 18.
    Gubin, S.A., Odintsov, V.V., and Pepekin, V.I., Thermodynamic Calculation of Ideal and Nonideal Detonations, Fizika goreniya i vzryva, 1987, vol. 23, no. 4, pp. 75–84.Google Scholar
  19. 19.
    Staver, A.M., Gubareva, N.V., Lyamkin, A.I., and Petrov, E.A., Ultrafine Diamond Powders Obtained by Using the Explosion Energy, Fizika Goreniya i Vzryva, 1984, vol. 20, no. 5, pp. 100–104.Google Scholar
  20. 20.
    Lyamkin, A.I., Petrov, E.A., Ershov, A.P., et al., Diamond Making from Explosives, DAN SSSR, 1988, vol. 302, no. 3, pp. 611–613.Google Scholar
  21. 21.
    Volkov, K.V., Danilenko, V.V., and Elin, V.I., Diamond Synthesis from the Carbon of Explosive Detonation Products, Fizika goreniya i vzryva, 1990, vol. 26, no. 3, pp. 123–125.Google Scholar
  22. 22.
    Oleinik, G.S. and Bochechka, A.A., On the Detonation Synthesis Mechanism of Forming Nanosize Particles of Diamond Obtained from Explosive Decomposition Products, J. Superhard Materials, 2008, vol. 30, no. 3, pp. 143–162.CrossRefGoogle Scholar
  23. 23.
    Aleksenskii, A.E., Baidakova, M.V., Vul’, A.Ya., et al., Diamond–Graphite Phase Transition in Clusters of Ultradispersed Diamond, Fizika Tverdogo Tela, 1997, vol. 39, issue 6, pp. 1125–1134.Google Scholar
  24. 24.
    Gamarnik, M.Y., Energetical Preference of Diamond Nanoparticles, Phys. Rev. B., 1996, vol. 54, no. 3, pp. 2150–2156.CrossRefGoogle Scholar
  25. 25.
    Gubarevich, T.M., Kostyukova, N.M., Sataev, R.R., and Fomina, L.V., Investigation of Micro–Trace Composition of Ultradispersed Diamond, Sverkhtverdye Materialy, 1991, no. 5, pp. 30–34.Google Scholar
  26. 26.
    Chukhaeva, S.I., Detkov, P.Ya., Tkachenko, A.P., and Toropov, A.D., Physicochemical Properties of Fractions Separated from Ultradispersed Diamonds, Sverkhtverdye Materialy, 1998, no. 4, pp. 29–36.Google Scholar
  27. 27.
    Gubarevich, T.M., Korzhenevskii, A.P., and Gamanovich, D.N., Industrial Complex for Production of Ultradispersed Diamonds, Sverkhtverdye Materialy, 1998, no. 4, pp. 17–22.Google Scholar
  28. 28.
    Savvakin, G.I., Ostrovskaya, N.R., and Oleinik, G.S., The Impact of Strongly Nonequilibrium Conditions of Dynamic Processing on the Structure of Diamond Powders, Poroshk. Metallurgiya, 1985, no. 4, pp. 78–83.Google Scholar
  29. 29.
    Golubev, A.S., Dubitskii, G.A., Kurdyumov, A.V., et al., Structure Formation of Lonsdeilite Based Polycrystals, DAN UkrSSR, Ser. A, 1984, no. 12, pp. 50–53.Google Scholar
  30. 30.
    Trefilov, V.I., Nochevkin, S.A., Savvakin, G.I., et al., Micropatterning of Polycrystals in the Powder Sintering Process of Detonation Synthesis Diamond, DAN USSR, 1985, vol. 283, no. 6, pp. 1379–1381.Google Scholar
  31. 31.
    Trefilov, V.I., Nochevkin, S.A., Oleinik, G.S., et al., Micropatterning of Polycrystals in the Powder Sintering Processes of Detonation Synthesis Diamond, DAN USSR, 1986, vol. 284, no. 4, pp. 860–863.Google Scholar
  32. 32.
    Bakun, O.V., Grigor’ev, O.N., Mel’nik, V.M., et al., Tverdost’ i treshchinostoikost’ vysokodispersnogo polikristallicheskogo almaza (Hardness and Crack Resistance of Highly Dispersed Polycrystalline Diamond), Fizika razrusheniya (Physics of Fracture), Tez. dokl. V Resp. konf., Kiev: IPM AN UkrSSR, 1985, pp. 254–255.Google Scholar
  33. 33.
    Britun, V.F. and Kurdyumov, A.V., The Structure of Polycrystals Produced by the Dynamic Synthesis Sintering of Diamond Powders, Sverkhtverdye Materialy, 1998, no. 4, pp. 36–41.Google Scholar
  34. 34.
    Danilenko, V.V., Petrusha, I.A., Oleinik, G.S., and Danilenko, N.V., Compact Structure Evolution during Nanodisperse Diamond Sintering at High Pressures, Sverkhtverdye Materialy, 1998, no. 4, pp. 53–61.Google Scholar
  35. 35.
    Lin, E.E., Novikov, S.A., Glushak, A.B., et al., Investigation of Conditions for Producing the Nanodiamond Based Powders and Compacts), Physicochemistry of Ultradisperse Systems, Papers of the IV All–Russia Conf., Moscow: MIFI, 1998.Google Scholar
  36. 36.
    Zvonarev, E.V., Senyut’, V.T., Starchenko, I.M., and Finskaya, V.M., Specific Features of UDD–Powder Compacting at High Pressures and Temperatures, Sverkhtverdye Materialy, 1998, no. 4, pp. 41–46.Google Scholar
  37. 37.
    Shipilo, V.B., Starchenko, I.M., Zvonarev, E.V., and Senyut’, V.T., Diamond–Containing Material Based on Detonation Synthesis Powders, Materialy, Tekhnologii, Instrumenty, 1997, vol. 2, no. 4, pp. 61–63.Google Scholar
  38. 38.
    Gryaznov, G.M., Ekimov, E.A., and Filonenko, V.P., Features of Nanodiamond Compacting, Physicochemistry of Ultradisperse Systems, Papers of the IV All–Russia Conf., Moscow: MIFI, 1998, pp. 269–270.Google Scholar
  39. 39.
    Shul’zhenko, A.A., Gargin, V.G., Shishkin, V.A., and Bochechka, A.A., Polikristallicheskie materialy na osnove almaza (Polycrystalline Diamond Based Materials), Kiev: Naukova Dumka, 1989.Google Scholar
  40. 40.
    Koval’chenko, M.S. and Dzhamarov, S.S., Powder Compacting Kinetics of Wurtzite Boron Nitride during Hot Pressing at High Pressure, Poroshk. Metallurgiya, 1984, no. 2, pp. 31–36.Google Scholar
  41. 41.
    Golovchan, V.T., Application Analysis of the Simplest Viscoplastic Model for Compacting Kinetic Investigation during the Sintering of Diamond Polycrystals, Sverkhtverdye Materialy, 2000, no. 2, pp. 8–18.Google Scholar
  42. 42.
    Mackenzie, J.K. and Shuttleworth, R., A Phenomenological Theory of Sintering, Proc. Phys. Soc. B., 1949, vol. 62, no. 12, pp. 833–852.CrossRefGoogle Scholar
  43. 43.
    Bochechka, A.A. and Lutsenko, A.N., Kinetics of Diamond Powder Compacting at Different Temperatures and at High Pressure, Sverkhtverdye Materialy, 2002, no. 1, pp. 67–81.Google Scholar
  44. 44.
    Bochechka, A.A., Romashko, L.A., Gavrilova, V.S., et al., Special Features of Sintering of Diamond Powders Having Different Dispersity under Conditions of High Pressure, J. Superhard Materials, 2007, vol. 29, no. 1, pp. 17–23.CrossRefGoogle Scholar
  45. 45.
    Bochechka, A.A., Analysis of Driving Forces of Sintering of Diamond Micro–and Nanoscale Powders at High Pressure, J. Superhard Materials, 2009, vol. 31, no. 5, pp. 292–299.CrossRefGoogle Scholar
  46. 46.
    Bochechka, O.O., Compacting Mechanism of Detonation Synthesis Nanopowder during its Sintering at High Pressure, Porodorazrushayushchii i metalloobrabatyvayushchii instrument—tekhnika i tekhnologiya ego izgotovleniya i primeneniya, Kyiv: ISM im. V.N. Bakulya NAN Ukrainy, 2017, issue 20, pp. 177–182.Google Scholar
  47. 47.
    Shul’zhenko, A.A., Bochechka, A.A., Romanko, L.A., et al., Special Features of Sintering of Nanometric Diamond Powders Heat–Treated in Vacuum, Sverkhtverdye Materialy, 2000, no. 6, pp. 50–56.Google Scholar
  48. 48.
    Nazarchuk, S.M., Bilyavina, N.M., Gavrilova, V.S., et al., Sintering of the Detonation Synthesis Diamond Nanopowders with Additions of Refractory Metals and their Oxides, Synthesis, Sintering and Properties of Superhard Materials, Kyiv: Logos, 2010, pp. 101–107.Google Scholar
  49. 49.
    Nazarchuk, S.N., Bochechka, A.A., Gavrilova, V.S., et al., Polycrystalline Composite Material (Diamond–Tungsten Carbide)), J. Superhard Materials, 2011, vol. 33, no. 1, pp. 1–12.CrossRefGoogle Scholar
  50. 50.
    Zabuga, V.Ya., Bochechka, O.O., Tsapyuk, G.G., et al., The Influence of Tungsten on the Kinetics of Diamond Nanopowder Oxidation, J. Superhard Materials, 2016, vol. 38, no. 1, pp. 8–17.CrossRefGoogle Scholar
  51. 51.
    Kurylyak, T.O., Bochechka, O.O., and Kutsay, O.M., The Influence of Tungsten Additives on the Functional Covering of Diamond Nanopowder ACM 5 0,1/0, Scientific Works of 16th Int. Young Scientists Conf. “Optics and High Technology Material Science” (SPO 2015), Kyiv, Ukraine, 22–25 Oct. 2015, AP 18, pp. 68–69.Google Scholar
  52. 52.
    Novikov, N.V., Bochechka, A.A., and Nazarchuk, S.N., Special Features of Interaction between Components during the Reactionary Sintering of Diamond–Tungsten Carbide and Diamond–Silicon Carbide Components at High Pressure, Porodorazrushayushchii i metalloobrabatyvayushchii instrument—tekhnika i tekhnologiya ego izgotovleniya i primeneniya: Sb. nauch. tr., Kyiv: ISM im. V.N. Bakulya NAN Ukrainy, 2012, Issue 15, pp. 232–240.Google Scholar
  53. 53.
    Bochechka, O.O, Nazarchuk, S.M., Gavrilova, V.S., and Romanko, L.O., Manufacturing Nanocomposite “Diamond–Tungsten Carbide” at High Pressure, Int. Conf. 7th Diamond & Related Films, Zakopane, Poland, 28 June–2 July, 2010, Warsaw University of Technology, 2010, pp. 109–110.Google Scholar
  54. 54.
    Novikov, M.V., Bochechka, O.O., Nazarchuk, S.M., Gavrilova, G.S., Oleinik, G.S., Romanko, L.O., Sveshnikov, I.A.,and Zabolotnyi, S.D., Ukraine Patent 93803, IPC B24D 3/02, B22F 3/14, Production Process of Diamond Composite Material, Byul., 2011, no. 5.Google Scholar
  55. 55.
    Bochechka, O.O., Sveshnikov, I.A., Nazarchuk, S.M., et al., Diamond Polycrystalline Composite Material Diamond–Tungsten Carbide for Drilling Tools, Instrumentalnyi Svit, 2011, no. 1–2 (49–50), pp. 50–52.Google Scholar
  56. 56.
    Grinding Powders of Thermally Stable Synthetic Diamonds: TU U 28.5–05417377–075–2003, (Valid from 2003–12–23), Kyiv: Ukrmetrteststandart, 2003.Google Scholar
  57. 57.
    Bochechka, A.A., Perekos, A.E., Nazarchuk, S.N, Rud’, A.D., Gavrilova, V.S., and Kiryan, I.M., Enhancing the Level of Physical–Mechanical Properties of Diamond–Tungsten Carbide Nanocomposite, Abstracts of 3–rd Intern. Samson Conf. “Materials Science of High–Melting Compounds”, Kyiv, Ukraine, 23–25 May 2012, Kyiv, 2012.Google Scholar
  58. 58.
    Stakhniv, N.E., Devin, L.N., Bochechka, A.A., and Nazarchuk, S.N., Application of Diamond–Tungsten Carbide Nanocomposite in the Process of Fine Turning of Brass, Porodorazrushayushchii i metalloobrabatyvayushchii instrument—tekhnika i tekhnologiya ego izgotovleniya i primeneniya, Kyiv: ISM im. V.N. Bakulya, NAN Ukrainy, 2017, Issue 20, pp. 428–434.Google Scholar
  59. 59.
    Stakhniv, N.E., Devin, L.N., Bochechka, A.A., et al., Investigation of the Influence of the Phase Composition of the Diamond–Tungsten Carbide Nanocomposite Cutting Plate on the Process of Fine Turning of Aluminum and Brass Alloys, J. Superhard Materials, 2018, vol. 40, no. 3, pp. 197–205.CrossRefGoogle Scholar
  60. 60.
    Osadchii, A.A., Nazarchuk, S.N., Bochechka, A.A., Devin, L.N., and Garbuz, T.A., Damping Properties of Diamond Nanocomposite with Additions of Tungsten Having Different Genesis, VI Intern. Samson Conf. “Materials Science of High–Melting Compounds”, Kyiv, Ukraine, 22–24 May 2018.Google Scholar
  61. 61.
    Stratapax* Drill Blanks & Geoset Drill Diamond //www.abrasivesnet.com/en/product/mbs/ strata/down/ DI%20Stratapax.pdf.Google Scholar
  62. 62.
    Bochechka, A.A., Degradation of Diamond Powder Particles under Exposure to High Pressure, Sverkhtverdye Materialy, 1983, no. 5, pp. 9–14.Google Scholar
  63. 63.
    Nazarchuk, S.N., Bochechka, A.A., and Petasyuk, G.A., Compacting of Diamond Powders under Exposure to High Pressure, Fizika i Tekhnika Vysokikh Davlenii, 2009, vol. 19, no. 3, pp. 7–11.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations