Advertisement

Journal of Superhard Materials

, Volume 40, Issue 5, pp 315–324 | Cite as

Growth of Structurally Perfect Diamond Single Crystals at High Pressures and Temperatures. Review

  • V. V. Lysakovskyi
  • N. V. Novikov
  • S. A. Ivakhnenko
  • O. A. Zanevskyy
  • T. V. KovalenkoEmail author
Production, Structure, Properties
  • 18 Downloads

Abstract

The investigations performed at high pressures and high temperatures (HTHP crystallization) have permitted clarifying the mechanism of phase transformations and carbon transport in solvent metals for diamond growth and elaborating methods for growing large-size structurally perfect diamond single crystals of types Ib, IIa, and IIb. The findings have provided the basis for the process of production of diamonds for applications in electronics, laser technology, precision machining operations, well drilling tools. The use of a large-volume six-punch high pressure apparatus makes it possible to grow diamond single crystals with a higher efficiency. It is estimated that this apparatus is capable of producing annually at least 1 mln carats of structurally perfect crystals of required types for various applications.

Keywords

diamond single crystals high pressure apparatus growth systems temperature gradient method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leipunskii, O.I., On synthetic diamonds, Uspekhi Khimii, 1939, no. 8, pp. 1519–1534.Google Scholar
  2. 2.
    Ulrich, H., Chemische Thermodinamik, Dresden, Leipzig: Steinkopff, 1930.Google Scholar
  3. 3.
    Berman, R., On the graphite–diamond equilibrium, J. Electrochem. Soc., 1955, vol. 59, no. 2, pp. 333–338.Google Scholar
  4. 4.
    Bundy, F.P., Bovenkerk, H.P., Strong, H.M., et al., Diamond–graphite equilibrium line from growth and graphitization of diamond, J. Chem. Phys., 1961, vol. 35, no. 2, pp. 383–391.Google Scholar
  5. 5.
    Bundy, F.P., Melting of graphite at very high pressure, J. Chem. Phys., 1963, vol. 38, no. 3, pp. 618–630.Google Scholar
  6. 6.
    Kennedy, C.S., and Kennedy, G.C., The equilibrium boundary between graphite and diamonds, J. Geophys. Res., 1976, vol. 81, no. 14, pp. 2467–2470.Google Scholar
  7. 7.
    Bundy, F.P., Direct conversion of graphite to diamond in static pressure apparatus, J. Chem. Phys., 1961, vol. 35, no. 2, pp. 631–643.Google Scholar
  8. 8.
    Novikov, N.I., Ed., Sverkhtverdye materialy. Polychenie i primenenie. V 6 tomakh (Superhard Materials. Production and Applications. in 6 Volumes). Volume 1. Shul’zhenko, A.A., Ed., Synthesis of Diamonds and Related Materials, Kyiv: IPC ALKON NAN Ukrainy, 2003.Google Scholar
  9. 9.
    Bundy, F.P., A history of the science and technology of diamond synthesis, in High–Pressure Science and Technology–1993, AIP Conf. Proc., Colorado Springs, Colorado, USA, 28 June2 July, 1993, New York: AIP Press, no. 309, pp. 495–498.Google Scholar
  10. 10.
    Bovenkerk, H.P., The commercialization of high pressure synthesized diamond, in High–Pressure Science and Technology–1993, AIP Conf. Proc., Colorado Springs, Colorado, USA, 28 June2 July, 1993, New York: AIP Press, no. 309, pp. 499–503.Google Scholar
  11. 11.
    Palyanov, Yu.N., Malinovskii, I.Yu., Bordzov, Yu.M., et al., Growth of large diamond crystals in press–less split–sphere apparatus, DAN SSSR, 1990, vol. 315, no. 5, pp. 1221–1224.Google Scholar
  12. 12.
    Hall, H.T., US Patent 2 941 248, 1960.Google Scholar
  13. 13.
    Khvostantsev, L.G., Vereshchagin, L.F., and Novikov, A.P., Device of toroid type for high pressure generation, High Temp.–High Press., 1977, vol. 9, no. 6, pp. 637–639.Google Scholar
  14. 14.
    Liu, X.B., Ma, H.A., Zhang, Z.F., et al., Effects of zinc additive on the HPHT synthesis of diamond in Fe–Ni–C and Fe–C systems, Diamond Relat. Mater., 2011, vol. 20, pp. 468–474.Google Scholar
  15. 15.
    Bakul, V.N., Prikhna, A.I., and Shulzhenko, A.A., US Patent 3 732 043, 1973.Google Scholar
  16. 16.
    Ivakhnenko, S.A., Mechanism of Directed Growsth of Diamond Single Crystals in the Thermodynamic Stability Region, Dr. Sci. (Eng.) Dissertation, Kiev, 1998.Google Scholar
  17. 17.
    Novikov, N.V. (Ed.), Fizicheskie svoistva almaza: Spravochnik (Physical Properties of Diamond. Handbook), Kiev: Naukova Dumka, 1987.Google Scholar
  18. 18.
    Kovalenko, T., Ivakhnenko, S., Gontar, O., et al., Diamond single crystals with semiconducting properties grown in Mg–C system, in EMRS 2016 Fall Meeting, Poland, Warsaw, 19–22 September, 2016, p. 121.Google Scholar
  19. 19.
    Strong, H.M. and Wentorf, R.H., The growth of large diamond crystals, J. Naturwissenschften, 1972, vol. 59, no. 1, pp. 1–7.Google Scholar
  20. 20.
    Wentorf, R.H., Some studies of diamond growth rates, J. Phys. Chem., 1971, vol. 75, no. 12, pp. 1833–1837.Google Scholar
  21. 21.
    Novikov, N.V., Sintez sverkhtverdykh materialov. V 3 tomakh (Synthesis of Superhard Materials. In 3 Volumes), Kiev: Naukova Dumka, 1986, Volume 1.Google Scholar
  22. 22.
    Palyanov, Y.N., Kupriyanov, I.N., Khokhryakov, A.F., et al., Crystal growth of diamond, in Rudolph, P., Ed., Handbook of Crystal Growth, Elsevier, 2015, pp. 671–713.Google Scholar
  23. 23.
    Spivak, A.V. and Litvin, Yu.A., Diamond syntheses in multycomponent carbonate–carbon melts of natural chemistry: elementary processes and properties, Diamond Relat. Mater., 2004, vol. 13, pp. 482–487.Google Scholar
  24. 24.
    Giardini, A.A. and Tydings, J.E., Diamond synthesis: observation on the mechanism of formation, Am. Mineralogy, 1962, vol. 47, no. 11/12, pp. 1393–1421.Google Scholar
  25. 25.
    Novikov, N.V., Ed., Fedoseyev, D.V., Shul’zhenko, A.A., and Bogatyreva, G.P., Sintez almazov (Diamond Synthesis), Kiev: Naukova Dumka, 1987.Google Scholar
  26. 26.
    Bokiy, G.B., Bezrukov, G.N., Klyuev, Yu.A., et al., Prirodnye i sinteticheskie almazy (Natural and Synthetic Diamonds), Moscow: Nauka, 1986.Google Scholar
  27. 27.
    Kaizer, W. and Bond, W.L., Nitrogen, a major impurity in common type I diamond, Phys. Rev., 1959, vol. 115, no. 4, pp. 857–863.Google Scholar
  28. 28.
    Guo–Feng Huang, You–Jin Zheng, Zhan–Chang Li, et al., Effects of Mg on diamond growth and properties in Fe–C system under high pressure and high temperature condition, Chin. Phys. B, 2016, vol. 25, no. 8, art. 088104.Google Scholar
  29. 29.
    Kanda, H., Akaishi, M., and Yamaoka, S., Synthesis of diamond with the highest nitrogen concentration, Diamond Relat. Mater., 1999, vol. 8, no. 8–9, pp. 1441–1443.Google Scholar
  30. 30.
    Kovalenko, T.V., Ivakhnenko, S.A., and Kutsai, A.M., Boron–containing impurity centers in diamonds grown in the magnesium–carbon system, in Porodorazrushayushchii i metalloobrabatyvayushchii instrument—tekhnika i tekhnologiya ego primeneniya. Sb. Nauch. Tr. (Rock–Destruction and Metal–Working Tools. Techniques and Technology of Their Applications. Collected Research Papers), Kyiv: ISM NAN Ukrainy, 2015, issue 18, pp. 220–224.Google Scholar
  31. 31.
    Kovalenko, T.V., Ivakhnenko, S.A., Lysakovsky, V.V., Gordeev, S.A., and Burchenya, A.V., Defect–and–impurity state of diamond single crystals grown in the Fe–Mg–Al–C system, J. Superhard Mater., 2017, vol. 39, no. 2, pp. 83–87.Google Scholar
  32. 32.
    Kovalenko, T.V. and Ivakhnenko, S.A., Properties of diamonds seed–grown in the magnesium–carbon system, J. Superhard Mater., 2013, vol. 35, no. 3, pp. 131–136.Google Scholar
  33. 33.
    Lysakovskii, V.V., Special features of growing diamond single crystals in the Fe–Co–Zr–C system, J. Superhard Mater., 2014, vol. 36, no. 5, pp. 303–307.Google Scholar
  34. 34.
    Lysakovskii, V.V. and Ivakhnenko, S.A., Kinetics of diamond single crystal growth in Fe–Co solvents doped with titanium and zirconium, J. Superhard Mater., 2009, vol. 31, no. 1, art. 7.Google Scholar
  35. 35.
    Chernov, A.A., Gevargizov, E.I., Bagdasarov, Kh.S., et al., Sovremennaya kristallografiya. V 4 tomakh (Modern Crystallography. In 4 Volumes), Moscow: Nauka, 1980, Volume 3.Google Scholar
  36. 36.
    Kovalenko, T.V., Mechanism of Crystallization of Semiconducting Diamond Single Crystals in Magnesium–Containing Growth Systems, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Kyiv, 2017.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. V. Lysakovskyi
    • 1
  • N. V. Novikov
    • 1
  • S. A. Ivakhnenko
    • 1
  • O. A. Zanevskyy
    • 1
  • T. V. Kovalenko
    • 1
    Email author
  1. 1.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations