Journal of Superhard Materials

, Volume 40, Issue 4, pp 229–235 | Cite as

Unusual Nano-Microcrystals of Natural Diamond

  • V. M. Kvasnytsya
Production, Structure, Properties


Described are unusual nano-microcrystals of natural diamond found in a meteorite crater of Ukraine and advised about the earlier unknown mechanism of diamond polyhedra growth—the formation by globules. It was revealed that diamond nano-microcrystals in a meteorite crater are very similar to globular crystals, and at the same time have octahedral faceting. The morphology and composition of diamond nano-microcrystals are studied by scanning electron microscopy and with an energy dispersive X-ray analyser. These tiny crystals are grown on the grains of impact apographitic diamond from the Bilylivka meteorite crater (Zapadnaya impact crater) on the Ukrainian Shield. Their surface morphology indicates that the nano-microdiamonds are grown, most probably, by a vapor deposition process immediately after the formation of the impact diamond–transformation of the graphite into diamond and lonsdaleite.


natural impact apographitic diamond nano-microdiamond morphology globular polyhedra growth of crystals Bilylivka meteorite crater the Ukrainian Shield 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gurov, E.P., Gurova, E.P., and Rakitskaya, R.B., Impact diamonds in the craters of the Ukrainian Shield, Meteoritics, 1995, vol. 30, pp. 515–516.Google Scholar
  2. 2.
    Gurov, E.P., Gurova, E.P., and Rakitskaya, R.B., Impact diamonds of the Zapadnaya crater: Phase Composition and some properties, Meteor. Planet. Sci., 1996, vol. 31, A56.Google Scholar
  3. 3.
    Val’ter, A.A., Gursky, D.S., and Erjomenko, G.K., Diamondiferous of the astroblemes of Ukraine and the nature of high concentrations of impact diamond, Mineral. J. (Ukraine), 1998, vol. 20, no. 6., pp. 48–63.Google Scholar
  4. 4.
    Gurov, E. P., Gurova, E.P., and Socur, T.M., Geology and petrography of the Zapadnaya crater in the Ukraine Shield, Impacts in Precambrian Shields, Plado, J., Pesonen, L.J., Eds., Heidelberg: Springer–Verlag, Berlin, 2002, pp. 173–188.CrossRefGoogle Scholar
  5. 5.
    Tsymbal, S.N., Kvasnitsa, V.N., Tsymbal, Yu. S., and Mel’nichuk, E.B., Diamond from impactites of Belilovka(Zapadnaya) astrobleme (the Ukrainian Shield), Mineral J. (Ukraine), 1999, vol. 21, pp. 45–52.Google Scholar
  6. 6.
    Oleinik, G.S., Valter, A.A., and Erjomenko, G.K., The structure of high lonsdaleite diamond grains from the impactites of the Belilovka (Zapadnaya) astrobleme (Ukraine), 34th Lunar and Planetary Science Conf. (LPSC), League City, Texas, US, March, 17–21, 2003, no. 1561.Google Scholar
  7. 7.
    Kvasnytsya, V.M., Wirth, R., and Tsymbal, S.M., Nano-micromorphology and anatomy impact apographitic diamonds from Bilylivka (Zapadnaya) astrobleme (the Ukrainian Shield), Mineral J. (Ukraine), 2015, vol. 37, no. 4, pp. 36–45.CrossRefGoogle Scholar
  8. 8.
    Kvasnytsya, V. and Wirth, R., Micromorphology and internal structure of apographitic impact diamonds: SEM and TEM study, Diam. Relat. Mater., 2013, vol. 32, pp. 7–16.CrossRefGoogle Scholar
  9. 9.
    Mel’nikova, V.A., Kolesnichenko, G.A., and Naidich, Yu.V., Spherulitic character of crystallization of diamond films deposited from the vapor phase, Dop. NAS of Ukraine, 1996, vol. 9, pp. 99–104.Google Scholar
  10. 10.
    Wells, A.F., Crystal habit and internal structure, Phylsoph. Magazine, 1946, vol. 37, no. 266, pp. 184–199.Google Scholar
  11. 11.
    Wolff, G.A., Faces and habits of diamond type crystals, Am. Mineral, 1956, vol. 41 (60), pp. 60–66.Google Scholar
  12. 12.
    Hartman, P., The non-uniform distribution of faces in a zone, Zeit. Kristalographie, 1965, vol. 121, pp. 78–80.CrossRefGoogle Scholar
  13. 13.
    Sunagawa, I., Morphology of natural and synthetic diamond crystals, Mater. Sci. Earth’s, Tokyo: Inter. TERRA Pub., 1984, pp. 303–330.Google Scholar
  14. 14.
    Sunagawa, I., Morphology of diamonds, Morphology and phase equilibrium of minerals (Materials of IMA, 1982), Sophia, 1986, pp. 195–207.Google Scholar
  15. 15.
    Sunagawa, I., Crystals: growth, morphology, and perfection, Cambridge, New York, Melbourne: Cambridge University Press, 2005.CrossRefGoogle Scholar
  16. 16.
    Hemley, R. J., Chen Yu-Ch, Yan Ch.–Sh., Growing diamond crystals by chemical vapor deposition, Elements, 2005, vol. 1, no. 2, pp. 105–108.CrossRefGoogle Scholar
  17. 17.
    Shermer, J.J., van Enckevort, W. J. P., Giling, L.J., Flame deposition and characterization of large type IIA diamond single crystals, Diam. Relat. Mater., 1994, vol. 3, pp. 408–416.CrossRefGoogle Scholar
  18. 18.
    Nanomineralogy: ultra-and microdisperse state of a mineral substance, Yushkin, N.P., Ashabov, A.M., Rakin, V.I., Eds., SPb: Nauka, 2005.Google Scholar
  19. 19.
    Ivanov, V.K., Fedorov, P.P., Baranchikov, A.E., Osiko, V.V., Oriented attachment of particles: 100 years of investigations of non-classical crystal growth, Rus. Chem. Rev., 2014, vol. 83, no. 12, pp. 1204–1222.CrossRefGoogle Scholar
  20. 20.
    Kvasnytsya, V., Wirth, R., Piazolo, S., Jacob, D. E., Trimby, P., Surface morphology and structural types of natural impact apographitic diamonds, J. Superhard Mater., 2016, vol. 38, no. 2, pp. 71–84.CrossRefGoogle Scholar
  21. 21.
    Val’ter, A.A., Erjomenko, G.K., Kvasnitsa, V.N., Polkanov, Yu.A., Shock metamorphogenetic carbon minerals, Kiev: Naukova Dumka, 1992.Google Scholar
  22. 22.
    Carlisle, D.V., Braman, D.R., Diamonds at the K/T boundary, Nature, 1991, vol. 352, p. 709.CrossRefGoogle Scholar
  23. 23.
    Gilmour, L., Russel, S.S., Arden J. W, Lee, M.R., Franchi, I.A., Pillinger G. T., Terrestrial carbon and nitrogen isotopic ratios from Cretaceous-Tertiary boundary Nanodiamonds, Science, 1992, vol. 258, pp. 1624–1626.CrossRefGoogle Scholar
  24. 24.
    Hough, R.M., Gilmour, I., Pillinger, S.T., Arden, J.W., Gilkes, K.W. R., Yuan, J., Milledge, H.J., Diamond and silicon carbide in impact melt rock from the Ries impact crater, Nature, 1995, vol. 378 (2), pp. 41–44.CrossRefGoogle Scholar
  25. 25.
    Hough, R.M., Gilmour, L., Pillinger, C.T., Diamonds from the iridium-rich K-T boundary layer at Arroyo el Mimbral, Tamaulipas, Mexico, Geology, 1997, vol. 25 (10), pp. 1019–1022.CrossRefGoogle Scholar
  26. 26.
    Hough, R.M., Gilmour, L., Pillinger, C.T., Carbon isotope study of impact diamonds in Chicxulub ejecta at Cretaceous-Tertiary boundary sites in Mexico and the Western Interior of the United States, Large Meteorite Impacts and Planetary Evolution II, Dressler, B.O., Sharpton, V.L., Eds., Geological Society of America, 1999. Special paper, 339, pp. 215–222.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Semenenko Institute of Geochemistry, Mineralogy and Ore FormationNational Academy of Sciences of UkraineKiev 142Ukraine

Personalised recommendations