Advertisement

Journal of Superhard Materials

, Volume 39, Issue 6, pp 405–415 | Cite as

Thermal and physico-mechanical properties of antifriction solid lubricant for cold plastic deformation of titanium alloys

  • V. S. GavrilovaEmail author
  • E. A. Pashchenko
  • S. V. Zhil’tsova
  • V. M. Mikhal’chuk
  • E. P. Mamunya
  • S. N. Dub
  • V. N. Tkach
Production, Structure, Properties
  • 17 Downloads

Abstract

The results of the investigations of thermophysical characteristics, thermomechanical and mechanical properties of epoxy-polysiloxane nanocomposites with different contents of modifying additives in the presence of fine-grained antifriction fillers. It is shown that the joint influence of the modifier (polysiloxane particles) and filler (graphite) on the formation of the composite structure during the hardening results in the essential improvement of its physico-mechanical properties. The optimal formulation of a composition to be used as an antifriction solid lubricant for a cold plastic deformation of titanium alloys is determined.

Keywords

epoxy-polysiloxane nanocomposite differential scanning calometry thermomechanical analysis nanoindentation hardness creep dissipation of the elastic energy solid lubricant for a cold plastic deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pozenberg, O.A., Mekhanika vzaimodeistviya instrumenta s izdeliem pri deformiruyushchem protyagivanii (Mechanics of the interaction of a tool with a product in deforming broaching), Kiev: Naukova Dumka, 1981.Google Scholar
  2. 2.
    Chuiko, P.I., Kolesnikov, N.V., Orro P.I., and Savin, G.A., Opredelenie kontaktnykh napryazhenii pri volochenii trub na korotkoi opravke (Determination of the contact stresses during the drawing pipes on a short arbour, in Tekhnological lubricants, Kiev: UkrNIINTI, 1971, pp. 73–76.Google Scholar
  3. 3.
    Semenov, A.P., Skhvatyvaniye metallov (Seizure of metals), Moscow: Mashgiz, 1958.Google Scholar
  4. 4.
    Pasechnik, M.S., Teoreticheskie osnovy razrabotki smazok dlya obrabotki metallov davleniem, (Theoretical fundamentals of the development of lubricants for machining metals by pressure), Kiev: UkrNIINTI, 1971, pp. 5–16.Google Scholar
  5. 5.
    Friedrich, K. and Schlarb, A.K., Tribology of polymeric nanocomposites: friction and wear of bulk materials and coatings: Second edition, Oxford, UK: Elsevier Butterworth–Heinemann, 2013.Google Scholar
  6. 6.
    Gavrilova, B.C., Mikhal’chuk, V.M., Zhil’tsova, S.V., Grigorenko, T.I., Rostotskii, I.Yu., Sheikin, S.E., Pashchenko, E.O., and Koshkin, O.M., Patent of Ukraine 107527, published 12.01.2015, Byul.1.Google Scholar
  7. 7.
    Gavrilova, B.C., Pashchenko, E.O., Shtompel’, V.I., et al., Effect of fillers and materials of the substrate on the structure of a polymeric matrix of a epoxy-polysiloxane composite, Porodorazrushayushchii i metalloobrabatyvayushchii instrument–tekhnika i tekhnologiya ego izgotovleniya i primeneniya(Rock Destruction and Metal-Working Tools–Techniques and Technology of the Tool Production and Applications), Collect. Sci. Papers, Kiev: Bakul’ ISM, Nat. Acad. Sci. of Ukraine, 2007, issue 10, pp. 333–339.Google Scholar
  8. 8.
    Shabanova, N.A. and Sarkisov, P.D., Osnovy zol’-gel’ tekhnologii nanodispersnogo kremnezema (Fundamentals of the sol–gel technology of nanodisperse silica), Moscow: IKTs “Akademkniga”, 2004.Google Scholar
  9. 9.
    Teitel’baum, B.Ya, Termomekhanicheskii analyz polimerov (Thermomechanical analysis of polymers), Moscow: Naukv, 1978.Google Scholar
  10. 10.
    Oliver, W.C. and Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.CrossRefGoogle Scholar
  11. 11.
    Raman, V. and Berriche, R., An investigation of the creep processes in tin and aluminium using a depth-sensing indentation technique, Ibid., 1992, vol. 7, no. 3, pp. 627–638.Google Scholar
  12. 12.
    Godovsky, Yu. K., Teplophyzika polimerov (Thermal physics of polymers), Moscow: Chemistry, 1982.Google Scholar
  13. 13.
    Leonova, N.G., Mikhal’chuk, V.M., Mamunya, Y.P., Davydenko, V.V., and Iurzhenko, M.V., Thermophysical properties of epoxy-polysiloxane composites of cationic polymerization, Polym. Sci. Ser. D., 2013, vol. 6, no. 3, pp. 210–217.CrossRefGoogle Scholar
  14. 14.
    Brinker, C.J. and Scherer, G. W., Sol–gel science: the physics and chemistry of sol–gel processing, Academic Press, Inc., 1990.Google Scholar
  15. 15.
    Zhyl’tsova, S., Mykhalchuk, V., Platonova, O., and Biloshenko, V., Epoxy-silica nanocomposites based on ethoxysilanes and diglycidyl ether of dicyclohexylolpropane, Chem. Chem. Technol., 2011, vol. 5, no. 1, pp. 49–54.Google Scholar
  16. 16.
    Zhil’tsova, S. V., Mikhal’chuk, V.M., Lyga, R.I., and Pavlii, P.M., Effect of sol formation conditions on the structure and properties of anhydride-cured epoxy-siloxane composites, Theor. Exp. Chem., 2014, vol. 50, no. 3, pp. 191–196.CrossRefGoogle Scholar
  17. 17.
    Ramezanzadeh, B., Haeri, Z., and Ramezanzadeh, M., A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance, Chem. Eng. J., 2016. vol. 303, pp. 511–528.CrossRefGoogle Scholar
  18. 18.
    Jiang, T., Kuila, T., Kim, N.H., Ku, B.-C., and Lee, J.H., Enhanced mechanical properties of silanized silica nanoparticle attached graphene oxide/epoxy composites, Compos. Sci. Technol., 2013, vol. 79, pp. 115–125.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. S. Gavrilova
    • 1
    Email author
  • E. A. Pashchenko
    • 1
  • S. V. Zhil’tsova
    • 2
  • V. M. Mikhal’chuk
    • 2
  • E. P. Mamunya
    • 3
  • S. N. Dub
    • 1
  • V. N. Tkach
    • 1
  1. 1.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKievUkraine
  2. 2.Vasyl’ Stus Donetsk National UniversityVinnitsaUkraine
  3. 3.Institute of Chemistry of High-Molecular CompoundsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations