Journal of Superhard Materials

, Volume 38, Issue 6, pp 393–401 | Cite as

Effect of the high doze of N+(1018 cm–2) ions implantation into the (TiHfZrVNbTa)N nanostructured coating on its microstructure, elemental and phase compositions, and physico-mechanical properties

  • A. D. Pogrebnjak
  • S. O. Bor’ba
  • Ya. O. Kravchenko
  • E. O. Tleukenov
  • C. V. Plotnikov
  • V. M. Beresnev
  • Y. Takeda
  • K. Oyoshi
  • A. I. Kupchishin
Production, Structure, Properties

Abstract

Structure and properties of (TiHfZrVNbTa)N nanostructured multicomponent coatings implanted with a very high (1018 cm–2) dose of N+ions have been studied. As a result of the implantation a multilayer structure has been formed in the surface layer of the coating. The structure is composed of amorphous, nanocrystalline (disperse) and nanostructured (with the initial sizes) nanolayers. In the depth of the coating two phases (with the fcc and hcp structures) having a small volume content are formed. The nitrogen concentration near the surface attains 90 at % and then decreases with the depth. In the initial state after the deposition the coating nanohardness values are from 27 to 34 GPa depending on the conditions of the deposition. As a result of the implantation the hardness is decreased approximately by the depth of the projective ions range, i.e., to 12 GPa and then increases with the depth to 23 GPa. The investigations were conducted using the Rutherford backscattering, scanning electron microscopy with the microanalysis, high resolution electron microscopy (with local microanalysis), X-ray diffraction, nanoindentation, and wear tests.

Keywords

implantation nanostructured multicomponent coating microstructure elemental and phase compositions physico-mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pogrebnjak, A.D. and Tolopa, A.M., A revive of high-dose implantion and production of ion mixed structures, Nucl. Instrum. Methods Phys. Res. B, 1990, vol. 52, pp. 24–43.CrossRefGoogle Scholar
  2. 2.
    Komarov, F.F., Ion beam modification of metals, Philadelphia: Gordon and Breach Science Publishers, 1992.Google Scholar
  3. 3.
    Lavrentiev, V.I. and Pogrebnjak, A.D., High-dose ion implantation into metals, Surf. Coat. Tech., 1998, vol. 99, pp. 24–32.CrossRefGoogle Scholar
  4. 4.
    Ivasishin, O.M., Pogrebnjak, A.D., and Bratushka, S.N., Nanostructured layers and coatings formed by ion-plasma fluxes in titanium alloys and steels, Kiev, Ukraine: Akademperiodika, 2011.Google Scholar
  5. 5.
    Pogrebnjak, A.D., Bratushka, S.N., Beresnev, V.M., and Levintant-Zayonts, N., Shape memory effect and superelas-ticity of titanium nickelide alloys implanted with high ion doses, Russ. Chem. Rev., 2013, vol. 82, no. 12, pp. 1135–1159.CrossRefGoogle Scholar
  6. 6.
    Senkov, O.N., Senkova, S.V., Dimiduk, D.M., Woodward, C., and Miracle, D.B., Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy, J. Mater. Sci., 2012, vol. 47, pp. 6522–6534.CrossRefGoogle Scholar
  7. 7.
    Salishchev, G., Tikhonovsky, M.A., Shaysultanov, D.G., Stepanov, N.D., Kuznetsov, A.V., Kolodiy, I.V., Tortika, A.S., and Senkov, O.N., Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system, J. Alloys Compd., 2014, vol. 591, pp. 11–24.CrossRefGoogle Scholar
  8. 8.
    Braic, V., Vladescu, A., Balaceanu, M., Luculescu, C.R., and Braic, M., Nanostructured multi-element (TiZrNbH-fTa)N and (TiZrNbHfTa)C hard coatings, Surf. Coat. Tech., 2012, vol. 211, pp. 117–121.CrossRefGoogle Scholar
  9. 9.
    Tsai, D.C., Huang, Y.L., Lin, S.R., Liang, S.C., and Shieu, F.S., Effect of nitrogen flow ratios on the structure and mechanical properties of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering, Appl. Surf. Sci., 2010, vol. 257, pp. 1361–1367.CrossRefGoogle Scholar
  10. 10.
    Pogrebnjak, A.D., Bagdasaryan, A.A., Yakushchenko, I.V., and Beresnev, V.M., The structure and properties of high-entropy alloys and nitride coatings based on them, Rus. Chem. Rev., 2014, vol. 83, no. 11, pp. 1027–1061.CrossRefGoogle Scholar
  11. 11.
    Pogrebnjak, A.D., Yakushchenko, I V., Bagdasaryan, A.A., Bondar, O.V., Krause-Rehberg, R., Abadias, G., Chartier, P., Oyoshi, K., Takeda, Y., Beresnev, V.M., and Sobol, O.V., Microstructure, physical and chemical properties of nanostructured (Ti–Hf–Zr–V–Nb)N coatings under different deposition conditions, Mater. Chem. Phys., 2014, vol. 147, no. 3, pp. 1079–1091.CrossRefGoogle Scholar
  12. 12.
    Zukowski, P., Koltunowicz, T.N., Bondariev, V., Fedotov, A.K., and Fedotova, J.A., Determining the percolation threshold for (FeCoZr)x(CaF2)(100-x) nanocomposites produced by pure argon ion-beam sputtering, J. Alloy Compd. 2016, vol. 683, pp. 62–66.CrossRefGoogle Scholar
  13. 13.
    Pogrebnjak, A.D., Yakushchenko, I.V., Bondar, O.V., Sobol, O.V., Beresnev, V.M., Oyoshi, K., Amekura, H., and Takeda, Y., The microstructure of a multielement nanostructured (TiZrHfVNbTa)N coating and its resistance to irradiation with Au–ions, Tech. Phys. Lett., 2015, vol. 41, no. 11, pp. 1054–1057.CrossRefGoogle Scholar
  14. 14.
    Pogrebnjak, A.D., Yakushenko, I.V., Bondar, O.V., Sobol, O.V., Beresnev, V.M., Oyoshi, K., Amekura, H., and Takeda, Y., Influence of implantation of Au–ions on the microstructure and mechanical properties of the nano-structured multielement (TiZrHfVNbTa)N coating, Phys. Solid. State, 2015, vol. 57, no. 8, pp. 1559–1564.CrossRefGoogle Scholar
  15. 15.
    Feng, X., Tang, G., Ma, X., Sun, M., and Wang, L., Characteristics of multi-element (ZrTaNbTiW)N films prepared by magnetron sputtering and plasma based on ion implantation, Nucl. Instrum. Methods Phys. Res. B., 2013, vol. 301, p. 29.CrossRefGoogle Scholar
  16. 16.
    Uglov, V.V., Abadias, G., Rovbut, A.Y., Zlotski., S.V., Saladukhin, I.A., Skuratov, V.A., and Petrovic, S., Thermal sta-bility of nanocrystalline (Ti,Zr)0.54Al0.46N films implanted by He+ ions, Ibid., 2015, vol. 354, pp. 269–273.Google Scholar
  17. 17.
    Komarov, F.F., Pogrebnjak, A.D., and Konstantinov, S.V., Radiation resistance of high entropy nanostructural coat-ings (Ti, Hf, Zr, V, Nb)N, J. Techn.Phys., 2015, vol. 85, no. 10, pp. 105–110.Google Scholar
  18. 18.
    Fedotov, A.K., Shepelevich, V., Poznyak, S., Tsybulskaya, L., Mazanik, A., Svito, I., Gusakova, S., Zukowski, P., and Koltunowicz, T.N., Simulation of polycrystalline bismuth films Seebeck coefficient based on experimental texture identification, Mat. Chem. Phys., 2016, vol. 177, pp. 413–416.CrossRefGoogle Scholar
  19. 19.
    Leyland, A. and Matthews, A., On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimized tribological behavior, Wear, 2000, vol. 246, pp. 1–11.CrossRefGoogle Scholar
  20. 20.
    Pogrebnjak, A.D., Postol’nyi, B.A., Kravchenko, Yu.A., Shipilenko, A.P., Beresnev, V.M., and Kuz’menko, A.P., Structure and properties of (Zr–Ti–Cr–Nb)N multielement superhard coatings, J. Superhard Mater., 2015, vol. 37, no. 2, pp. 101–111.CrossRefGoogle Scholar
  21. 21.
    Pogrebnjak, A.D., Demianenko, A.A., Pshik, A.V, Kravchenko, Yu.A., Beresnev, V.M., Amekura, H., Kono, K., Oyoshi, K., Takeda, Y., and Podchernyaeva, I.A., Structural features and physico-mechanical properties of AlN–TiB2–TiSi2 amorphous-like coatings, Ibid., 2015, vol. 37, no. 5, pp. 310–321.Google Scholar
  22. 22.
    Pogrebnjak, A.D. and Kravchenko Yu.A., Modification of mechanical properties of TiN/Al2O3 and TiN/Cr/Al2O3 coatings using low-energy high-current electron beams, Ibid., 2013, vol. 35, no. 2, pp. 105–110.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • A. D. Pogrebnjak
    • 1
  • S. O. Bor’ba
    • 1
  • Ya. O. Kravchenko
    • 1
  • E. O. Tleukenov
    • 2
  • C. V. Plotnikov
    • 2
  • V. M. Beresnev
    • 3
  • Y. Takeda
    • 4
  • K. Oyoshi
    • 4
  • A. I. Kupchishin
    • 5
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Serikbaev East Kazakhstan State Technical UniversityUst’-KamenogorskKazakhstan
  3. 3.Karazin Kharov National UniversityKharkovUkraine
  4. 4.National Institute for Material Science (NIMS)Ibaraki prefectureJapan
  5. 5.Abai Kazakhstan National Pedagogical UniversityAlmatyKazakhstan

Personalised recommendations