Journal of Superhard Materials

, Volume 38, Issue 2, pp 103–113 | Cite as

Nb–Al–N thin films: Structural transition from nanocrystalline solid solution nc-(Nb,Al)N into nanocomposite nc-(Nb, Al)N/a–AlN

  • V. I. IvashchenkoEmail author
  • S. N. Dub
  • P. L. Scrynskii
  • A. D. Pogrebnjak
  • O. V. Sobol’
  • G. N. Tolmacheva
  • V. M. Rogoz
  • A. K. Sinel’chenko
Production, Structure, Properties


Structures and mechanical properties of thin films of the Nb–Al–N system produced by magnetron sputtering of targets from niobium and aluminum in the Ar–N2 atmosphere have been studied. It has been shown that as the aluminum concentration increases, the structure of a thin film transforms from the nanocrystalline into the nanocomposite one, which consists of nanocrystallites of solid solutions in a matrix of amorphous aluminum nitride. Hardness, elastic modulus, and yield strength of Nb–Al–N thin films have been studied by nanoindentation in the mode of continuous control of the contact stiffness. It has been found that the transition of the structures of Nb–Al–N thin films from the nanocrystalline to the nanocomposite structures results in an increase of hardness and decrease of elastic modulus due to the formation of a thin amorphous interlayer between grains of nanocrystallites. A high hardness to elastic modulus ratio of Nb–Al–N nanocomposite thin films indicates that the films are a promising material for wear-resistant coatings.


Nb–Al–N X-ray structure analysis thin films nanoindentation first-principles calculation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnett, S.A., Madan, A., Kom, I., and Martin, K., Stability of nanometer-thick layers in hard coatings, MRS Bulletin, 2003, vol. 169, pp. 169–172.CrossRefGoogle Scholar
  2. 2.
    Gotoh, Y., Nagao, M., Ura, T., Tsuji, H., and Ishikawa, J., Ion beam assisted deposition of niobium nitride thin films for vacuum microelectronics devices, Nucl. Instr. Methods Phys. Res. B, 1999, vol. 148, pp. 925–929.CrossRefGoogle Scholar
  3. 3.
    Selinder, T.I., Miller, D.J., and Gray, K.E., Phase formation and microstructure of Nb1xAlxN alloy films grown on MgO (001) by reactive sputtering: a new ternary phase, Vacuum, 1995, vol. 46, pp. 1401–1406.CrossRefGoogle Scholar
  4. 4.
    Makino, Y., Saito, K., Murakami, Y., and Asami, K., Phase change of Zr–Al–N and Nb–Al–N films prepared by magnetron sputtering method, Solid State Phenomena, 2007, vol. 127, pp. 195–200.CrossRefGoogle Scholar
  5. 5.
    Barshilla, H.C., Deepthi, B., and Rajam, K.S., Structure and properties of reactive direct current magnetron sputtered niobium aluminum nitride coatings, J. Mater. Res., 2008, vol. 23, pp. 1258–1268.CrossRefGoogle Scholar
  6. 6.
    Franz, R., Lechthaler, M., Polzer, C., and Mitterer, C., Structure, mechanical properties and oxidation behavior of arc-evaporated NbAlN hard coatings, Surf. Coat. Technol., 2010, vol. 204, pp. 2447–2453.Google Scholar
  7. 7.
    Holec, D., Franz, R., Mayrhofer, P.H., and Mitterer, C., Structure and stability of phases within the NbN–AlN system, J. Phys. D. Appl. Phys., 2010, vol. 41, art. 145403.CrossRefGoogle Scholar
  8. 8.
    Holec, D., Rachbauer, R., Kiener, D., Cherns, P.D., Costa, P.M. F. J., McAleese, C., Mayrhofer, P.H., and Humphreys, C.J., Towards predictive modelling of near-edge structures in electron energy loss spectra of AlN based ternary alloys, Phys. Rev. B, 2011, vol. 83, art. 165122.CrossRefGoogle Scholar
  9. 9.
    Jadannadham, K., Sharma, A.K., Wei, Q., Kalyanraman, R., and Narayan, J., Structural characteristics of AlN films deposited by pulsed laser deposition and reactive magnetron sputtering: A comparative study, J. Vac. Sci. Technol. A, 1998, vol. 16, pp. 2804–2814.CrossRefGoogle Scholar
  10. 10.
    Beresnev, V.M., Torianyk, I.M., Sobol’, O.V., Pogrebnyak, A.D., Kropotov, A.Yu., Stervoedov, N.G., Nyemchenko, U.S., Kolesnikov, D.A., and Klimenko, S.A., AlN–TiB2–TiSi2 coatings obtained by pulsed magnetron sputtering, Techn. Phys., 2014, vol. 59, pp 1220–1223.CrossRefGoogle Scholar
  11. 11.
    Rosenberger, L., Baird, R., McCullen, E., Auner, G., and Shreve, G., XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy, Surf. Interface Anal., 2008, vol. 40, pp. 1254–1261.CrossRefGoogle Scholar
  12. 12.
    Ivashchenko, V.I., Scrynskyy, P.L., Lytvyn, O.S, Butenko, O.O., Sinelnichenko, O.K., Gorb, L., Hill F., Leszczynski, J., and Kozak, A.O., Comparative investigation of NbN and Nb–Si–N films: Experiment and theory, J. Superhard Mater., 2014, vol. 36, no. 6, pp. 381–392.CrossRefGoogle Scholar
  13. 13.
    Umanskii, Ya.S. and Skakov, Yu.A., Fizika Metallov. Atomnoe stroenie metallov i splavov (Physics of metals. Atomic structure of metals and alloys), Moscow: Atomizdat, 1978.Google Scholar
  14. 14.
    Tabor, D., Hardness of metals, Oxford: Clarendon Press, 1951.Google Scholar
  15. 15.
    Lysenko, O.G., Dub, S.N., Grushko, V.I., Mitskevich, E.I., and Tolmacheva, G.N., Study of phase transformations in silicon by scanning tunneling spectroscopy and nanoindentation, J. Superhard Mater., 2013, vol. 35, no. 6, pp. 350–355.CrossRefGoogle Scholar
  16. 16.
    Zbib, A.A. and Bahr, D.F., Dislocation nucleation and source activation during nanoindentation yield points, Metall. Mater. Trans. A., 2007, vol. 38, pp. 2249–2255.CrossRefGoogle Scholar
  17. 17.
    Abadias, G., Koutsokeras, L.E., Dub, S.N., Tolmachova, G.N., Debelle, A., Sauvage, T., and Villechaise, P., Reactive magnetron co-sputtering of hard and conductive ternary nitride thin films: Ti–Zr–N and Ti–Ta–N, J. Vac. Sci. Technol. A, 2010, vol. 28, pp. 541–551.CrossRefGoogle Scholar
  18. 18.
    Saladukhin, A., Abadias, G., Michel, A., Zlotski, S.V., Uglov, V.V., Tolmachova, G.N., and Dub, S.N., Influence of Al content on the phase formation, growth stress and mechanical properties of TiZrAlN coatings, Thin Solid Films, 2013, vol. 538, pp. 32–41.Google Scholar
  19. 19.
    Dub, S.N., Brazhkin, V.V., Belous, V.A., Tolmacheva, G.N., and Konevskii, P.V., Comparative nanoindentation of single crystals of hard and superhard oxides, J. Superhard Mater., 2014, vol. 36, no. 4, pp. 217–230.CrossRefGoogle Scholar
  20. 20.
    Johnson, K.L., Contact mechanics, Cambridge: Cambridge University Press, 1985.CrossRefGoogle Scholar
  21. 21.
    Leyland, A. and Matthews, A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear, 2000, vol. 246, pp. 1–11.CrossRefGoogle Scholar
  22. 22.
    Lin, J., Moore, J.J., Mishra, B., Pinkas, M., and Sproul, W.D., The structure and mechanical and tribological properties of TiBCN nanocomposite coatings, Acta Mater., 2010, vol. 58, pp. 1554–1564.CrossRefGoogle Scholar
  23. 23.
    Ivashchenko, V.I., Veprek, S., Turchi, P.E.A., Shevchenko, V.I., Leszczynski, J., Gorb, L., and Hill, F., First-principles molecular dynamics investigation of thermal and mechanical stability of the TiN(001)/AlN and ZrN(001)/AlN heterostructures, Thin Solid Films, 2014, vol. 564, pp. 284–293.CrossRefGoogle Scholar
  24. 24.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi. G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M., Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Cond. Matter., 2009, vol. 21, art. 395502.Google Scholar
  25. 25.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868.CrossRefGoogle Scholar
  26. 26.
    Kraus, W. and Nolze, G., PowderCell for Windows (version 2.4), Berlin, Germany: Federal Institute for Materials Research and Testing, 2000.Google Scholar
  27. 27.
    Ivashchenko, V., Veprek, S., Pogrebnjak, A., and Postolnyi, B., First-principles quantum molecular dynamics study of TixZr1xN(111)/SiNy heterostructures and comparison with experimental results, Sci. Tech. Adv. Mater., 2014, vol. 15, art. 025007 (11).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • V. I. Ivashchenko
    • 1
    Email author
  • S. N. Dub
    • 2
  • P. L. Scrynskii
    • 1
  • A. D. Pogrebnjak
    • 3
  • O. V. Sobol’
    • 4
  • G. N. Tolmacheva
    • 5
  • V. M. Rogoz
    • 3
  • A. K. Sinel’chenko
    • 1
  1. 1.Frantsevich Institute for Materials Science ProblemsNational Academy of Sciences of UkraineKievUkraine
  2. 2.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKievUkraine
  3. 3.Sumy State UniversitySumyUkraine
  4. 4.Khar’kovskii Polytechnic Institute National Technical UniversityKhar’kivUkraine
  5. 5.National Scientific CenterKharkiv Institute of Physics and TechnologyKharkivUkraine

Personalised recommendations