Journal of Superhard Materials

, Volume 37, Issue 5, pp 310–321 | Cite as

Structural features and physico-mechanical properties of AlN-TiB2-TiSi2 amorphous-like coatings

  • A. D. Pogrebnjak
  • A. A. Demianenko
  • A. V. Pshik
  • Yu. A. Kravchenko
  • O. V. Sobol’
  • V. M. Beresnev
  • H. Amekura
  • K. Kono
  • K. Oyoshi
  • Y. Takeda
  • I. A. Podchernyaeva
Production, Structure, Properties

Abstract

The coating of the AlN-TiB2-TiSi2 system has been produced by the magnetron sputtering of a target. At the high-temperature (900 and 1300°C) actions the coating crystallization to form crystallites of sizes 11–25 nm has been observed. It has been defined that the amorphous-like structure is promising for the use of these coatings as diffusion barriers both as the independent elements and a contacting layer in multilayer wear-resistant coatings. It has been shown that the use of the resultant composite as an effective protective coating for cutting tools will make it possible to increase the tools wear resistance by more than 30% at the temperature up to 1300°C in the cutting zone.

Keywords

nanocomposite coating magnetron sputtering phase and elemental compositions microhardness annealing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pogrebnjak, A.D. and Beresnev, V.M., Nanocoatings Nanosystems Nanotechnologies, Oak Park, IL, US: Bentham Science Publishers Ltd., 2012.CrossRefGoogle Scholar
  2. 2.
    Musil, J.. Hard nanocomposite coatings: thermal stability, oxidation resistance, and toughness, Surf. Coat. Tech., 2012, vol. 207, pp. 50–65.CrossRefGoogle Scholar
  3. 3.
    Venneman, A., Stock, H.-R., Kohlscheen, J., et al., Oxidation resistance of titanium–aluminum–silicon nitride coatings, Ibid., 2003, vol. 174, pp. 408–415.Google Scholar
  4. 4.
    Pogrebnjak, A.D., Shpak, A.P., Azarenkov, N.A., and Beresnev, V.M., Structures and properties of hard and superhard nanocomposite coatings, Phys.-Usp., 2009, vol. 52, no. 1, pp. 29–54.CrossRefGoogle Scholar
  5. 5.
    Veprek, S., Veprek- Heijman, M.G.J., Karvankova P., and Prochazka, J., Possible role of oxygen impurities in degradation of nc-TiN/a-Si3N4 nanocomposites, Thin Solid Films, 2005, vol. 23, no. 6, pp. L17–L21.Google Scholar
  6. 6.
    Pogrebnjak, A.D., Shpak, A.P., Beresnev, V.M., et al., Structure and properties of nano- and microcomposite coating based on Ti–Si–N/WC–Co–Cr, Acta Phys. Polon. A, 2011, vol. 120, no.1, pp. 100–104.Google Scholar
  7. 7.
    Ivashchenko, V.I., Veprek, S., Pogrebnjak, A.D., and Postolnyi, B.O., First-principles quantum molecular dynamics study of TixZr1xN(111)/SiNy heterostructures and comparison with experimental results, Sci. Tech. Adv. Mater., 2014, vol. 15, art. 025007.CrossRefGoogle Scholar
  8. 8.
    Pogrebnjak, A.D., Ponomarev, A.G., Shpak, A.P., and Kunitskii, Yu.A., Application of micro- and nanoprobes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects, Phys.-Usp., vol. 55, no. 3, pp. 270–300.Google Scholar
  9. 9.
    Park, I.-W., Choi, S.R., Suh, J.H., et al., Deposition and mechanical evaluation of superhard Ti–Al–Si–N nanocomposite film by a hybrid coating system, Thin Solid Films, 2010, no. 3, pp. 443–448.Google Scholar
  10. 10.
    Jiang, N., Shen, Y.G., Zhang, H.J., Bao, S.N., and Hou, X.Y., Superhard nanocomposite Ti–Al–Si–N films deposited by reactive unbalanced magnetron sputtering, Mater. Sci. Eng., 2006, vol. 135, no. 1, pp. 1–9.CrossRefGoogle Scholar
  11. 11.
    Barshilia, H.C., Deepthi, B., and Rajam, K.S., Deposition and characterization of TiAlN/Si superhard nanocomposite coatings prepared by reactive direct current unbalanced magnetron sputtering, Vacuum, 2006, vol. 81, no. 4, pp. 479–488.CrossRefGoogle Scholar
  12. 12.
    Söderberg, H., Odén, M., Molina-Aldareguia, J.M., and Hultman, L., Epitaxial stabilization of cubic-SiNx in TiN/SiNx multilayers, Appl. Phys. Lett., 2005, vol. 97, no. 11, art. 114327.Google Scholar
  13. 13.
    Zhang, K., Wang, L.S., Yue, G.H., et al., Structure and mechanical properties of TiAlSiN/Si3N4 multilayer coatings, Surf. Coat. Tech., 2011, vol. 205, no. 12, pp. 3588–3595.CrossRefGoogle Scholar
  14. 14.
    Nguyen, T.D., Kim, S.K., and Lee, D.B., High-temperature oxidation of nano-multilayered TiAlCrSiN thin films in air, Ibid., 2009, vol. 204, no. 5, pp. 697–704.Google Scholar
  15. 15.
    Fukumoto, N., Ezura, H., Yamamoto, K., et al., Effects of bilayer thickness and post-deposition annealing on the mechanical and structural properties of (Ti,Cr,Al)N/(Al,Si)N multilayer coatings, Ibid., 2009, vol. 203, pp. 1343–1348.Google Scholar
  16. 16.
    Pogrebnjak, A.D., Kravchenko, Yu.A., Kislitsyn, S.B., et al., TiN/Cr/Al2O3 hybrid coatings structure features and properties from combined treatment, Ibid., 2006, vol. 201, pp. 2621–2632.Google Scholar
  17. 17.
    Ning, L., Veldhuis, S.C., and Yamamoto, K., Investigation of wear behavior and chip formation for cutting tools with nano-multilayered TiAlCrN/NbN PVD coating, Int. J. Mach. Tool Manuf., 2008, vol. 48, no. 6, pp. 656–665.CrossRefGoogle Scholar
  18. 18.
    Pogrebnjak, A.D., Yakushchenko, I.V., Abadias, G., et al., The effect of the deposition parameters of nitrides of high-entropy alloys (Ti–Zr–Hf–V–Nb)N on their structure, composition, mechanical and tribological properties, J. Superhard Mater., 2013, vol. 35, no. 6, pp. 356–368.CrossRefGoogle Scholar
  19. 19.
    Beresnev, V.M., Toryanik, I.N., Sobol’, O.V., et al., The use of the pulse magnetron scattering to produce coatings of the AlN–TiB2–TiSi2 system, J. Techn. Phys., 2014, vol. 84, no. 8, pp. 118–122.Google Scholar
  20. 20.
    Grigor’eva, I.S. and Meilikhova, E.Z., Fizicheskie velichiny: Sprav. (Physical Magnitudes. Handbook), Moscow: Energoatomizdat, 1991.Google Scholar
  21. 21.
    Pogrebnjak, A.D., Beresnev, V.M., Demianenko, A.A., et al., Adhesive strength, superhardness, and the phase and elemental compositions of nanostructured coatings based on Ti–Hf–Si–N, Phys. Solid State, 2012, vol. 54, no. 9, pp. 1882–1890.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • A. D. Pogrebnjak
    • 1
  • A. A. Demianenko
    • 1
  • A. V. Pshik
    • 1
  • Yu. A. Kravchenko
    • 1
  • O. V. Sobol’
    • 2
  • V. M. Beresnev
    • 3
  • H. Amekura
    • 4
  • K. Kono
    • 4
  • K. Oyoshi
    • 4
  • Y. Takeda
    • 4
  • I. A. Podchernyaeva
    • 5
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Khar’kovskii Polytechnic Institute National Technical UniversityKhar’kovUkraine
  3. 3.Karazin Khar’kov National UniversityKhar’kovUkraine
  4. 4.National Institute for Materials Science (NIMS)Tsukuba, Ibaraki PrefectureJapan
  5. 5.Frantsevich Institute for Materials Science ProblemsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations