Journal of Superhard Materials

, Volume 37, Issue 2, pp 101–111 | Cite as

Structure and properties of (Zr-Ti-Cr-Nb)N multielement superhard coatings

  • A. D. Pogrebnjak
  • B. A. Postol’nyi
  • Yu. A. Kravchenko
  • A. P. Shipilenko
  • O. V. Sobol’
  • V. M. Beresnev
  • A. P. Kuz’menko
Production, Structure, Properties


Structure and properties of (Zr-Ti-Cr-Nb)N multicomponent nanostructured coatings fabricated by a vacuum-arc deposition have been investigated. It has been found that the coatings thickness attained 6.2 μm, hardness and indentation load that is responsible for the stress exceeding cohesion strength of coatings were H = 43.7 GPa and L c = 62.06 N, respectively. In coatings structures have been identified that consist of three interstitial phases having cubic, hexagonal, and tetragonal lattices. The nanocrystallites sizes were from 4 to 7.3 nm. The results of the SEM, TEM, EDS, and XRD analysis have been also considered.


multielement coatings nitrides vacuum-arc evaporation phase and elemental compositions microhardness cohesion strength 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azarenkov, N.A., Beresnev, V.M., Pogrebnjak, A.D., and Kolesnikov, D.A., Nanostructurnye pokrytiya i nanomaterialy. Osnovy polucheniya. Svoistva. Oblasti primeneniya. Osobennosti sovremennogo nanostrukturnogo napravleniya v nanotekhnologii (Nanostructural coatings and nanomaterials. Principles of production. Properties. Fields of applications. Special features of the modern nanostructural line in nanotechnology), Moscow: Librokom Book house, 2012.Google Scholar
  2. 2.
    Pogrebnjak, A.D., Shpak, A.P., Azarenkov, N.A., and Beresnev, V.M., Structures and properties of hard and superhard nanocomposite coatings, Phys. Usp., 2009, vol. 52, no. 1, pp. 29–54.CrossRefGoogle Scholar
  3. 3.
    Aouadi, S.M., Wong, K.C., Mitchell, K.A.R., Namavar, F., Tobin, E., Mihut, D.M., and Rohde, S.L., Characterization of titanium chromium nitride nanocomposite protective coatings, Appl. Surf. Sci., 2004, vol. 229, nos. 1–4, pp. 387–394.CrossRefGoogle Scholar
  4. 4.
    Han, J.G., Myung, H.S., Lee, H.M., and Shaginyan, L.R., Microstructure and mechanical properties of Ti-Ag-N and Ti-Cr-N superhard nanostructured coatings, Surf. Coat. Technol., 2003, vols. 174–175, pp. 738–743.CrossRefGoogle Scholar
  5. 5.
    Belov, D.S., Volkhonsky, A.O., Blinkov, I.V., et al., Multilayer nanostructured wear-resistant coatings with increased thermal stability, adapted to varying friction conditions, Proc. Int. Conf. Nanomaterials: Applications and Properties, 2013, vol. 2, no. 2, art. 02FNC10.Google Scholar
  6. 6.
    Boxman, R.L., Zhitomirsky, V.N., Grimberg, I., Rapoport, L., Goldsmith, S., and Weiss, B.Z., Structure and hardness of vacuum-arc deposited multi-component nitride coatings of Ti, Zr and Nb, Surf. Coat. Technol., 2000, vol. 125, nos. 1–3, pp. 257–262.CrossRefGoogle Scholar
  7. 7.
    Kim GwangSeok, Kim BomSok, Lee SangYul, and Hahn JunHee, Structure and mechanical properties of Cr-Zr-N films synthesized by closed field unbalanced magnetron sputtering with vertical magnetron sources, Ibid., 2005, vol. 200,nos. 5–6, pp. 1669–1675.Google Scholar
  8. 8.
    Zhang, S., Wang, N., Li, D.J., Dong, L., Gu, H.Q., Wan, R.X., and Sun, X., The synthesis of Zr-Nb-N nanocomposite coating prepared by multitarget magnetron co-sputtering, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, vol. 307, pp. 119–122.CrossRefGoogle Scholar
  9. 9.
    Pogrebnjak, A.D., Danilionok, M.M., Uglov, V.V., Erdybaeva, N.K., Kirik, G.V., Dub S.N., Rusakov, V.S., Shypylenko, A.P., Zukovski, P.V., and Tuleushev, Y.Zh., Nanocomposite protective coatings based on Ti-N-Cr/Ni-Cr-B-Si-Fe, their structure and properties, Vacuum, 2009, vol. 83, (SUPPL., 1), pp. S235–S239.CrossRefGoogle Scholar
  10. 10.
    Musil, J., Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness, Surf. Coat. Technol., 2012, vol. 207, pp. 50–65.CrossRefGoogle Scholar
  11. 11.
    Hasegawa, H., Kimura, A., and Suzuki, T., Microhardness and structural analysis of (Ti,Al)N, (Ti,Cr)N, (Ti,Zr)N and (Ti,V)N films, J. Vac. Sci. Technol. A, 2000, vol. 18, no. 3, pp. 1038–1040.CrossRefGoogle Scholar
  12. 12.
    Lee, J.-W., Chang, Sh.-T., Chen, H.-W., Chien, Ch.-H., Duh, J.-G., and Wang, Ch.-J., Microstructure, mechanical and electrochemical properties evaluation of pulsed DC reactive magnetron sputtered nanostructured Cr-Zr-N and Cr-Zr-Si-N thin films, Surf. Coat. Technol., 2010, vol. 205, no. 5, pp. 1331–1338.CrossRefGoogle Scholar
  13. 13.
    Pogrebnjak, A.D., Yakushchenko, I.V., Abadias, G., Chartier, P., Bondar, O.V., Beresnev, V.M., Takeda, Y., Sobol’, O.V., Oyoshi, K., Andreyev, A.A., and Mukushev, B.A., The effect of the deposition parameters of nitrides of high-entropy alloys (Ti-Zr-Hf-V-Nb)N on their structure, composition, mechanical and tribological properties, J. Superhard Mater., 2013, vol. 35, no. 6, pp. 356–368.CrossRefGoogle Scholar
  14. 14.
    Belous, V.A., V’yugov, P.N., Kuprin, A.S., Leonov, S.A., Nosova, G.I., Ovcharenko, V.D., Ozhigov, L.S., Rudenko, A.G., Savchenko, V.I., Tolmacheva, G.N., and Khoroshikh, V.M., Mechanical characteristics of fuel element tubes from the Zr1Nb alloy after the deposition of ion-plasma coatings, Problems Atom. Sci. Technol., 2013, vol. 2, no. 84, pp. 140–143.Google Scholar
  15. 15.
    Cokolenko, B.I., Mats, A.V., and Mats, V.A., Mechanical characteristics of zirconium and zirconium-niobium alloys, High Pressure Physics and Technics, 2013, vol. 23, no. 2, pp. 96–102.Google Scholar
  16. 16.
    Sobol’, O.V., Pogrebnjak, A.D., and Beresnev, V.M., Effect of the manufacturing conditions on the phase composition, structure, and mechanical characteristics of vacuum-arc coatings of the Zr-Ti-Si-N system, Physics of Metals and Metallography, 2011, vol. 112, no. 2, pp. 199–206.Google Scholar
  17. 17.
    Slokar, L., Matkoviæ, T., and Matkoviæ, P., Alloy design and property evaluation of new Ti-Cr-Nb alloys, Mater. Design, 2012, vol. 33, pp. 26–30.CrossRefGoogle Scholar
  18. 18.
    Beresnev, V.M., Sobol’, O.V., Pogrebnjak, A.D., Turbin, P.V., and Litovchenko, S.V., Thermal stability of the phase composition, structure, and stressed state of ion-plasma condensates in the Zr-Ti-Si-N system, Techn. Phys., 2010, vol. 55, no. 6, pp. 871–873.CrossRefGoogle Scholar
  19. 19.
    Tsau, Ch.-H. and Chang, Yu-H., Microstructures and mechanical properties of TiCrZrNbNx alloy nitride thin films, Entropy, 2013, vol. 15, no. 11, pp. 5012–5021.CrossRefGoogle Scholar
  20. 20.
    Pogrebnjak, A.D., Beresnev, V.M., Bondar, O.V., Abadias, G., Chartier, P., Postol’nyi, B.A., Andreev, A.A., and Sobol’, O.V., The effect of nanolayer thickness on the structure and properties of multilayer TiN/MoN coatings, Techn. Phys. Lett., 2014, vol. 40, no. 3, pp. 215–218.CrossRefGoogle Scholar
  21. 21.
    Pogrebnjak, A.D., Shpak, A.P., Beresnev, V.M., Kolesnikov, D.A., Kunitskii, Yu.A., Sobol, O.V., Uglov, V.V., Komarov, F.F., Shypylenko, A.P., Makhmudov, N.A., Demyanenko, A.A., Baidak, V.S., and Grudnitskii, V.V., Effect of thermal annealing in vacuum and in air on nanograin sizes in hard and superhard coatings Zr-Ti-Si-N, J. Nanosci. Nanotechnol., 2012, vol. 12, no. 12, pp. 9213–9219.CrossRefGoogle Scholar
  22. 22.
    Krause-Rehberg, R., Pogrebnyak, A.D., Borisyuk, V.N., Kaverin, M.V., Ponomarev, A.G., Bilokur, M.A., Oyoshi, K., Takeda, Y., Beresnev, V.M., and Sobol’, O.V., Analysis of local regions near interfaces in nanostructured multicomponent (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapour deposition from an arc of an evaporating cathode, Phys. Metals Metallography, 2013, vol. 114, no. 8, pp. 672–680.CrossRefGoogle Scholar
  23. 23.
    Pogrebnjak, A.D., Beresnev, V.M., Kolesnikov, D.A., Bondar, O.V., Takeda, Y., Oyoshi, K., Kaverin, V., Sobol, O.V., Krause-Rehberg, R., and Karwat, C., Multicomponent (Ti-Zr-Hf-V-Nb)N nanostructure coatings fabrication, high hardness and wear resistance, Acta Physica Polonica A, 2013, vol. 123, no. 5, pp. 816–818.CrossRefGoogle Scholar
  24. 24.
    Pogrebnjak, A.D., Structure and properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings, J. Nanomater., 2013, vol. 2013, art. ID 780125.Google Scholar
  25. 25.
    Umanskii, L.S., Skakov, Yu.S., Ivanov, A.S., and Rastorguev, L.N., Kristallografiya, rentgenografiya i electronnayamicroscopiya (Crystallography, roentgenography and electron microscopy), Moscow: Metallurgiya, 1982.Google Scholar
  26. 26.
    Pogrebnjak, A.D. and Beresnev, V.M., Nanocoatings Nanosystems Nanotechnologies, Oak Park, IL: Bentham Sci. Publ., 2012.Google Scholar
  27. 27.
    Ivashchenko, V., Veprek, S., Pogrebnjak, A., and Postolnyi, B., First-principles quantum molecular dynamics study of TixZr1xN(111)/SiNy heterostructures and comparison with experimental results, Sci. Technol. Adv. Mater., 2014, vol. 15, art. 025007.Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • A. D. Pogrebnjak
    • 1
  • B. A. Postol’nyi
    • 1
  • Yu. A. Kravchenko
    • 1
  • A. P. Shipilenko
    • 1
  • O. V. Sobol’
    • 2
  • V. M. Beresnev
    • 3
  • A. P. Kuz’menko
    • 4
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.National Technical University Kharkiv Polytechnic InstituteKharkivUkraine
  3. 3.Karazin Kharkiv National UniversityKharkivUkraine
  4. 4.Southwest State UniversityKurskRussia

Personalised recommendations