Journal of Superhard Materials

, Volume 36, Issue 4, pp 246–256 | Cite as

Metastable host-guest structure of carbon

  • Q. ZhuEmail author
  • O. D. Feya
  • S. E. Boulfelfel
  • A. R. Oganov
Production, Structure, Properties


A family of metastable host-guest structures, the prototype of which is a tetragonal tP9 structure with 9 atoms per cell has been found. It is composed of an 8-atoms tetragonal host, with atoms filling channels oriented along the c-axis. The tP9 structure has a strong analogy with the recently discovered Ba-IV- and Rb-IV-type incommensurate structures. By considering modulations of the structure due to the variations of the host/guest ratio, it has been concluded that the most stable representative of this family of structures has a guest/host ratio of 2/3 and 26 atoms in the unit cell (space group P42/m). This structure is 0.39 eV/atom higher in energy than diamond. We predict it to have band gap 4.1 eV, bulk modulus 384 GPa, and hardness 61–71 GPa. Due to the different local environments of the host and guest atoms, we considered the possibility of replacing carbon atoms in the guest sublattice by Si atoms in the tP9 prototype and study the properties of the resulting compound SiC8, which was found to have remarkably high bulk modulus 361.2 GPa and hardness 46.2 GPa.


density functional theory evolutionary algorithm incommensurate crystal silicon carbide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heimann, R.B., Evsyukov, S.E., and Koga, Y., Carbon allotropes: a suggested classification scheme based on valence orbital hybridization, Carbon, 1997, vol. 35, pp. 1654–1657.CrossRefGoogle Scholar
  2. 2.
    Iijima, S., Helical microtubules of graphitic carbon, Nature, 1991, vol. 354, pp. 56–58.CrossRefGoogle Scholar
  3. 3.
    Ekimov, E.A., Sidorov, V.A., Bauer, E.D., et al., Superconductivity in diamond, Ibid., 2004, vol. 428, pp. 542–545.CrossRefGoogle Scholar
  4. 4.
    Meyer, J.C., Geim, A.K., Katsnelson, M.I., et al., The structure of suspended graphene sheets, Ibid., 2007, vol. 446, pp. 60–63.CrossRefGoogle Scholar
  5. 5.
    Wang, X., Scandolo, S., and Car, R., Carbon phase diagram from ab initio molecular dynamics, Phys. Rev. Lett., 2005, vol. 95, art. 185701.Google Scholar
  6. 6.
    Mao, W.L., Mao, H.K., Eng, P.J., et al., Bonding changes in compressed superhard graphite, Science, 2003, vol. 302, pp. 425–427.CrossRefGoogle Scholar
  7. 7.
    Buchnum, M.J. and Hoffman, R., A hypothetical dense 3,4-connected carbon net and related B2C and CN2 nets built from 1,4-cyclohexadienoid units, J. Am. Chem. Soc., 1994, vol. 116, pp. 11456–11464.CrossRefGoogle Scholar
  8. 8.
    Winkler, B., Pickard, C.J., Milman, V., et al., Prediction of a nanoporous sp2-carbon framework structure by combining graph theory with quantum mechanics, Chem. Phys. Lett., 1999, vol. 312, pp. 536–541.Google Scholar
  9. 9.
    Li, Q., Ma, Y., Oganov, A.R., et al., Superhard monoclinic polymorph of carbon, Phys. Rev. Lett., 2009, vol. 102, art. 175506.Google Scholar
  10. 10.
    Ribeiro, F.J., Tangney, P., Louie, S.G., et al., Structural and electronic properties of carbon in hybrid diamond-graphite structures, Phys. Rev. B, 2005, vol. 72, art. 214109.Google Scholar
  11. 11.
    Wang, Z.W., Zhao, Y.S., Tait, K., et al., A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes, Proc. Natl. Acad. Sci., 2004, vol. 101, pp. 13699–13702.CrossRefGoogle Scholar
  12. 12.
    Pickard, C.J. and Needs, R.J., Hypothetical low-energy chiral framework structure of group 14 elements, Phys. Rev. B, 2010, vol. 81, art. 014106.Google Scholar
  13. 13.
    Umemoto, K., Wentzcovitch, R.M., Saito, S., et al., Body-centered tetragonal C4: A viable sp3 carbon allotrope, Phys. Rev. Lett., 2010, vol. 104, art. 125504.Google Scholar
  14. 14.
    Hoffmann, R., Hughbanks, T., and Kertesz, M., A hypothetical metallic allotrope of carbon, J. Am. Chem. Soc., 1983, vol. 105, pp. 4831–4832.CrossRefGoogle Scholar
  15. 15.
    Zhu, Q., Oganov, A.R., Salvado, M., et al., Denser than diamond: ab initio search for superdense carbon allotropes, Phys. Rev. B, 2011, vol. 83, art. 193410.Google Scholar
  16. 16.
    Lyakhov, A.O. and Oganov, A.R., Evolutionary search for superhard materials applied to forms of carbon and TiO2, Ibid., 2011, vol. 84, art. 092103.Google Scholar
  17. 17.
    Zhu, Q., Zeng, Q., and Oganov, A.R., Systematic search for low-enthalpy sp3 carbon allotropes using evolutionary metadynamics, Ibid., 2011, vol. 85, art. 201407.Google Scholar
  18. 18.
    McMahon, M.I. and Nelmes, R.J., High-pressure structures and phase transformations in elemental metals, Chem. Soc. Rev., 2006, vol. 35, pp. 943–963.CrossRefGoogle Scholar
  19. 19.
    Nelmes, R.J., Allan, D.R., Mcmahonet, M.I., et al., Self-hosting incommensurate structure of barium-IV, Phys. Rev. Lett., 1999, vol. 83, pp. 4081–4084.CrossRefGoogle Scholar
  20. 20.
    Reed, S.K. and Ackland, G.J., Theoretical and computational study of high-pressure structures in barium, Ibid., 2000, vol. 84, pp. 5580–5584.CrossRefGoogle Scholar
  21. 21.
    McMahon, M.I., Degtyareva, O., and Nelmes, R.J., Pressure dependent incommensuration in Rb-IV, Ibid., 2001, vol. 87, art. 055501.Google Scholar
  22. 22.
    Arapan, S., Mao H.K., and Ahuja, R., Prediction of incommensurate crystal structure in Ca at high pressure, Proc. Natl. Acad. Sci., 2008, vol. 52, pp. 20627–20630.CrossRefGoogle Scholar
  23. 23.
    Oganov, A.R., Ma, Y.M., Xu, Y., et al., Exotic behavior and crystal structures of calcium under pressure, Ibid., 2010, vol. 107, pp. 7646–7651.CrossRefGoogle Scholar
  24. 24.
    McMahon, M.I., Degtyareva, O., and Nelmes, R.J., Ba-IV-type incommensurate crystal structure in group-V metals, Phys. Rev. Lett., 2000, vol. 85, pp. 4896–4899.CrossRefGoogle Scholar
  25. 25.
    Degtyareva, O., McMahon, M.I., and Nelmes, R.J., Pressure-induced incommensurate-to-incommensurate phase transition in antimony, Phys. Rev. B, 2004, vol. 70, art. 18419.Google Scholar
  26. 26.
    Fujihisa, H., Akahama, Y., Kawamura, H. et al., Incommensurate structure of phosphorus phase IV, Phys. Rev. Lett., 2007, vol. 98, art. 175501.Google Scholar
  27. 27.
    Hejny, C. and McMahon, M.I., Large structural modulations in incommensurate Te-III and Se-IV, Ibid., 2003, vol. 91, art. 215502.Google Scholar
  28. 28.
    McMahon, M.I, Hejny, C., Loveday, J.S., et al., Confirmation of the incommensurate nature of Se-IV at pressures below 70 GPa, Phys. Rev. B, 2004, vol. 70, art. 054101.Google Scholar
  29. 29.
    Hejny, C., Lundegaard, L.F., Falconi, S., et al., Incommensurate sulfur above 100 GPa, Ibid., 2005, vol. 71, art. 020101.Google Scholar
  30. 30.
    Pickard, C.J. and Needs, R.J., Aluminum at terapascal pressures, Nat. Mater., 2010, vol. 9, pp. 624–627.Google Scholar
  31. 31.
    Oganov, A.R. and Glass, C.W., Crystal structure prediction using ab initio evolutionary techniques: principles and applications, J. Chem. Phys., 2006, vol. 124, art. 244704.Google Scholar
  32. 32.
    Oganov, A.R., Lyakhov, A.O., and Valle, M., How evolutionary crystal structure prediction works-and why, Acc. Chem. Res., 2011, vol. 44, pp. 227–237.CrossRefGoogle Scholar
  33. 33.
    Lyakhov, A.O., Oganov, A.R., Stokes, H.T., et al., New developments in evolutionary structure prediction algorithm USPEX, Comp. Phys. Comm., 2013, vol. 184, pp. 1172–1182.CrossRefGoogle Scholar
  34. 34.
    Hohenberg, P. and Kohn, W., Inhomogeneous electron gas, Phys. Rev. B, 1964, vol. 136, pp. 864–871.CrossRefGoogle Scholar
  35. 35.
    Kohn, W. and Sham, L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev. A, 1965, vol. 140, pp. 1133–1138.CrossRefGoogle Scholar
  36. 36.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865.CrossRefGoogle Scholar
  37. 37.
    Blochl, P.E., Projector augmented-wave method, Phys. Rev. B, 1994, vol. 50, pp. 17953–17978.CrossRefGoogle Scholar
  38. 38.
    Kresse, G. and Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method, Ibid., 1999, vol. 59, pp.1758–1775.CrossRefGoogle Scholar
  39. 39.
    Kresse, G. and Furthmller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Ibid., 1996, vol. 54, pp. 11169–11186.CrossRefGoogle Scholar
  40. 40.
    Togo, A., Oba, F., and Tanaka, I., First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Ibid., 2008, vol. 78, art. 134106.Google Scholar
  41. 41.
    Heyd, J., Scuseria, G.E., and Ernzerhof, M., Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys., 2006, vol. 124, art. 219906.Google Scholar
  42. 42.
    Bader, R.F.W., Atoms in molecules. A quantum theory, Oxford: Oxford University Press, 1990.Google Scholar
  43. 43.
    Tang, W., Sanville, E., and Henkelman, G., A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Condens. Matter, 2009, vol. 21, art. 084204.Google Scholar
  44. 44.
    Chen, X.-Q., Niu, H., Li, D., et al., Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 2011, vol. 19, pp. 1275–1281.CrossRefGoogle Scholar
  45. 45.
    Hill, R., The elastic behavior of a crystalline aggregate, Proc. Phys. Soc. London, 1952, vol. 65, pp. 349–354.CrossRefGoogle Scholar
  46. 46.
    Voigt, W., Lehrbuch der Kristallphysik, Leipzig: Verl. von B.G. Teubner, 1928.Google Scholar
  47. 47.
    Reuss, A., Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle, Z. Angew. Math. Mech., 1929, vol. 9, pp. 49–58.CrossRefGoogle Scholar
  48. 48.
    Oganov, A.R, Chen, J., Gatti, C., et al., Ionic high-pressure form of elemental boron, Nature, 2009, vol. 457, pp. 863–867.CrossRefGoogle Scholar
  49. 49.
    Fahy, S., Chang, K.J, and Louie, S.G., Pressure coefficients of band gaps of diamond, Phys. Rev. B, 1987, vol. 35, pp. 5856–5859.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • Q. Zhu
    • 1
    • 2
    Email author
  • O. D. Feya
    • 3
  • S. E. Boulfelfel
    • 1
  • A. R. Oganov
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of GeosciencesState University of New YorkStony BrookUSA
  2. 2.Center for Materials by Design, Institute for Advanced Computational ScienceState University of New YorkStony BrookUSA
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudny city, Moscow RegionRussian Federation
  4. 4.Northwestern Polytechnical UniversityXi’anP. R. China

Personalised recommendations