Journal of Superhard Materials

, Volume 36, Issue 1, pp 29–34 | Cite as

Superhard coatings of the (Zr-Ti-Si)N and (Ti-Hf-Si)N systems produced by vacuum-arc deposition from a separated flow

  • V. M. Beresnev
  • S. A. Klimenko
  • I. N. Toryanik
  • A. D. Pogrebnjak
  • O. V. Sobol’
  • P. V. Turbin
  • S. S. Grankin
Production, Structure, Properties

Abstract

Multicomponent hard coatings based on nitrides of Si-doped transition metals have been produced by vacuum-arc deposition with the use of a RF generator and separation of an ion-plasma flux. Physico-mechanical and tribotechnical characteristics of coatings have been studied. The possibility of their use as efficient protective coatings has been shown.

Keywords

protective coatings vacuum-arc deposition nitrides of metals cutting tools 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koch, K., Ovil’ko, I., Sil, S., and Veprek, S., Konstruktsionnye nanokristallicheskie materialy. Nauchnye osnovy i prilozheniya (Structural Nanocrystalline Materials. Scientific Principles and Applications), Moscow: Fizmatlit, 2012.Google Scholar
  2. 2.
    Pogrebnjak, A.D., Shpak, A.P., Azarenkov, N.A. and Beresnev, V.M., Structure and properties of Hard and Superhard Nanocomposite Coatings, Physics-Uspekhi, 2009, vol. 179, no. 1, pp. 35–64.Google Scholar
  3. 3.
    Berlin, E.V. and Seidman, L.A., Ionno-plazmennye protsessy v tonkoplenochnoi tekhnologii (Ion-Plasma Processes in the Thin-Film Technology), Moscow: Tekhnosfera, 2010.Google Scholar
  4. 4.
    Aksenov, I.I., Andreev, A.A., Belous, V.A., et al., Vakuumnaya duga: istochniki plazmy, osazhdenie pokrytii, poverkhnostnoe modifitsirovanie (Vacuum Arc: Plasma Sources, Deposition of Coatings, Surface Modification), Kiev: Naukova Dumka, 2012.Google Scholar
  5. 5.
    Beresnev, V.M., Shvets, O.M., and Belyaeva, T.N., Special Features of the Input of a High-Frequency Energy by a Plasma Stream, Physical Engineering of Surface, 2005, vol. 3, nos. 1–2, pp. 71–73.Google Scholar
  6. 6.
    Shvets, O.M., Beresnev, V.M., and Turbin, P.V., et al., The Use of a Pulse RF-Oscillator with a Shock Circuit in a Vacuum-Arc Deposition when Synthesizing Nanostructured Coatings, ibid., 2011, vol. 9, no. 1, pp. 32–39.Google Scholar
  7. 7.
    Pogrebnjak, A.D., Shpak, A.P., Beresnev, V.M., et al., Stoichiometry, Phase Composition, and Properties of Ti-Hf-Si-N Superhard Nanostructural Films Produced by a Vacuum-Arc Source in a High-Frequency Discharge, PZhTF, 2011, vol. 37, no. 13, pp. 90–97.Google Scholar
  8. 8.
    Pogrebnjak, A.D., Sobol, O.V., Beresnev, V.M., et al., Phase Composition Thermal Stability, Physical and Mechanical Properties of Superhard on Base Zr-Ti-Si-N Nanocomposite Coatings, Nanostructured Materials and Nanotechnology IV: Ceramic Eng. Sci. Proc., 2010, vol. 31, no. 7, pp. 127–138.CrossRefGoogle Scholar
  9. 9.
    Azarenkov, N.A., Sobol’, O.V., Pogrebnjak, A.D., and Beresnev, V.M., Inzheneriya vakuumno-plazmennykh pokrytii (Engineering of Vacuum-Plasma Coatings), Khar’kov: Karazin Khar’kov National University, 2011.Google Scholar
  10. 10.
    Pogrebnjak, A.D., Shpak, A.P., Beresnev, V.M., et al., Effect of Thermal Annealing in Vacuum and Air on Nanograin Sizes in Hard and Superhard Coatings ZrTiSiN, J. Nanosci. Nanotech., 2012, vol. 12, pp. 9213–9218.CrossRefGoogle Scholar
  11. 11.
    Kelly, P.J. and Arnell, R.D., Magnetron Sputtering: a Review of Recent Developments and Applications, J. Vacuum, 2000, vol. 56, pp. 159–172.CrossRefGoogle Scholar
  12. 12.
    Beresnev, V.M., Sobol, O.V., Pogrebnjak, A.D., et al., Thermal Stability of the Phase Composition, Structure, and Stressed State of Ion-Plasma Condensates of the Zr-Ti-Si-N System, ZhTF, 2010, vol. 80, issue 6, pp. 117–120.Google Scholar
  13. 13.
    Myshkin, N.K. and Petrokovets, M.I., Trenie, smazka, iznos. Fizicheskie ocnovy I tekhnicheskie prilozheniya tribologii (Friction, Lubrication, Wear. Physical Principles and Technical Applications of Tribology), Moscow: Fizmatlit, 2007.Google Scholar
  14. 14.
    Sobol, O.V., Pogrebnjak, A.D., and Beresnev, V.M., Effect of the Preparation Conditions on Phase Composition/Structure, and Mechanical Characteristics of Vacuum-Arc Zr-Ti-Si-N Coatings, Phys. Metals Metallography, 2011, vol. 112, pp. 199–206.Google Scholar
  15. 15.
    Beresnev, V.M., Kaverin, M.V., Akhmed, M.M., Smolyakova, M.Yu., Kolesnikov, D.A., Kirik, G.V., Komarov, F.F., Grudnitskii. V.V., and Nemchenko, U.S., Tribotechnical Properties of Ti-Zr-Si-N Nanocomposite Coatings Deposited by an Ion-Plasma Method, Friction and Wear, 2012, vol. 33, no. 3, pp. 215–222.Google Scholar
  16. 16.
    Krioni, N.K., Migranov, M.Sh., and Shuster, L.Sh., Composite Materials with a Predictable Adaptation in Fracture and Cutting Metals, Vestnik UGATU, 2009, vol. 12, no. 2 (31), pp. 88–92.Google Scholar
  17. 17.
    Matsevityi, V.M., Kazak, I.B., and Vakulenko, K.V., Fiziko-tekhnicheskie aspekty adgezii tverdykh tel (Physico-Technical Aspects of Adhesion of Solids), Kiev: Naukova Dumka, 2010.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • V. M. Beresnev
    • 1
  • S. A. Klimenko
    • 2
  • I. N. Toryanik
    • 1
  • A. D. Pogrebnjak
    • 3
  • O. V. Sobol’
    • 4
  • P. V. Turbin
    • 1
    • 5
  • S. S. Grankin
    • 1
  1. 1.Karazin Khar’kiv National UniversityKhar’kovUkraine
  2. 2.Bakul Institute for Superhard MaterialsNational Academy of Sciences of UkraineKievUkraine
  3. 3.Sumy State UniversitySumyUkraine
  4. 4.Khar’kivskii Polytechnic Institute National Technical UniversityKhar’kivUkraine
  5. 5.Scientific Physico-Technological Center of the Ministry of Education and National Academy of Sciences of UkraineKhar’kivUkraine

Personalised recommendations