Journal of Superhard Materials

, Volume 35, Issue 6, pp 356–368 | Cite as

The effect of the deposition parameters of nitrides of high-entropy alloys (TiZrHfVNb)N on their structure, composition, mechanical and tribological properties

  • A. D. Pogrebnjak
  • I. V. Yakushchenko
  • G. Abadias
  • P. Chartier
  • O. V. Bondar
  • V. M. Beresnev
  • Y. Takeda
  • O. V. Sobol’
  • K. Oyoshi
  • A. A. Andreyev
  • B. A. Mukushev
Production, Structure, Properties


Nitrides of high-entropy alloys TiZrHfVNb produced using a vacuum-arc cathode evaporation have been studied using scanning electron and atomic force microscopies, energy dispersive, Rutherford ions backscattering, and X-ray diffraction analyses, microhardness measurements, and tribological tests. It has been found that the deposition parameters affect the structure, surface morphology, distribution of elements, mechanical and tribological properties of the coatings under study.


high-entropy alloys vacuum-arc cathode evaporation phase and element compositions microhardness Young modulus friction coefficient wear factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pogrebnjak, A.D. and Kravchenko, Yu.A., Modification of Mechanical Properties of TiN/Al2O3 and TiN/Cr/Al2O3Coatings Using Low-Energy High-Current Electron Beams, J. Superhard Mater., 2013, vol. 35, no. 2, pp. 105–110.CrossRefGoogle Scholar
  2. 2.
    Musil, J., Hard Nanocomposite Coatings: Thermal Stability, Oxidation Resistance and Toughness, Surf. and Coat. Tech., 2012, vol. 207, pp. 50–65.CrossRefGoogle Scholar
  3. 3.
    Pogrebnjak, A.D., Shpak, A.P., Azarenkov, N.A. and Beresnev, V.M., Structure and properties of Hard and Superhard Nanocomposite Coatings, UPhN, 2009, vol. 179, no. 1, pp. 35–63.Google Scholar
  4. 4.
    Pogrebnyak, A.D., Ponomarev, A.G., Kolesnikov, et al., Effect of Mass Transfer and Segregation on the Formation of Superhard Nanostructured Ti-Hf-N(Fe) Coatings, Techn. Phys. Lett., 2012, vol. 38, no. 7, pp. 623–626.CrossRefGoogle Scholar
  5. 5.
    Pogrebnjak, A.D., Beresnev, V.M., Demianenko, A.A., Baidak, V.S., Komarov, F.F., Kaverin, M.V., Makhmudov, N.A., and Kolesnikov, D.A., Adhesive Strength, Supermicrohardness, and the Phase and Elemental Compositions of Nanostructured Coatings Based on Ti-Hf-Si-N, Phys. of the Solid State, 2012, vol. 54, no. 9, pp. 1882–1890.CrossRefGoogle Scholar
  6. 6.
    Pogrebnjak, A.D., Shpak, A.P., Beresnev, V.M., et al., Effect of Thermal Annealing in Vacuum and Air on Nanograin Sizes in Hard and Superhard Coatings Zr-Ti-Si-N, J. Nanosci. and Nanotechn., 2012, vol. 12, no. 12, pp. 9213–9219.CrossRefGoogle Scholar
  7. 7.
    Borisov, D.P., Moshkov, D.Yu., Ovchinnikov, S.V., Oskomov, K.V., Pinzhin, Yu.P., Savostikov, V.M., Tyumentsev, A.N., and Korotaev, A.D., Nanocomposite and Nanostructural Superhard Coatings of the Ti-Si-B-N System, Isvestiya Vuzov, Fizika, 2007, vol. 50, no. 10, pp. 13–23.Google Scholar
  8. 8.
    Pogrebnjak, A.D., Sobol, O.V., Beresnev, V.M., et al., Phase Composition, Thermal Stability, Physical and Mechanical Properties of Superhard on Base Zr-Ti-Si-N Nanocomposite Coatings, Nanostructured Materials and Nanotechnology, IV: Ceramic Eng. Sci. Proc., 2010, vol. 31, no. 7, pp. 127–138.CrossRefGoogle Scholar
  9. 9.
    Veprek, S. and Veprek-Heijman, M.G.J., Limits to the Preparation of Superhard Nanocomposites: Impurities, Deposition, and Annealing Temperature, Thin Solid Films, 2012, vol. 522, pp. 274–282.CrossRefGoogle Scholar
  10. 10.
    Yeh, J.-W., Chen, Y.-L., Lin, S.-J, and Chen, S.-K., High Entropy Alloys—A New Era of Exploitation, Mater. Sci. Forum, 2007, vol. 560, pp. 1–9.CrossRefGoogle Scholar
  11. 11.
    Lai, C.-H., Tsai, M.-H., Lin, S.-J., and Yeh, J.-W., Influence of Substrate Temperature on Structure and Mechanical, Properties of Multi-Element (AlCrTaTiZr)N Coatings, Surf. Coat. Technol., 2007, vol. 201, pp. 6993–6998.CrossRefGoogle Scholar
  12. 12.
    Huang, P.K. and Yeh, J.W., Effects of Nitrogen Content on Structure and Mechanical Properties of Multi-Element (AlCrNbSiTiV)N Coating, ibid., 2009, vol. 203, pp. 1891–1896.CrossRefGoogle Scholar
  13. 13.
    Chang, Sh.-Y. and Chen, D.-Sh., 10-nm-Thick Quinary (AlCrTaTiZr)N Film as Effective Diffusion Barrier for Cu Interconnects at 900°C, Appl. Phys. Lett., 2009, vol. 94, art. 231909.Google Scholar
  14. 14.
    Liang, S.-Ch., Chang, Z.-Ch., Tsai, D.-Ch., Lin, Y.-Ch., Sung, H.-Sh., Deng, M.-J., and Shieu, F.-Sh., Effects of Substrate Temperature on the Structure and Mechanical Properties of (TiVCrZrHf)N Coatings, Appl. Surf. Sci., 2011, vol. 257, pp. 7709–7713.CrossRefGoogle Scholar
  15. 15.
    Chang, Z.-Ch., Liang, Sh.-Ch., and Han, Sh., Effect of Microstructure on the Nanomechanical Properties of TiVCrZrAl Nitride Films Deposited by Magnetron Sputtering, Nuclear Instruments and Methods in Physics Research B, 2011, vol. 269, pp. 1973–1976.CrossRefGoogle Scholar
  16. 16.
    Krause-Reihberg, R., Pogrebnjak, A.D., Borisyuk, V.N., Kaverin, M.V., Ponomarev, A.G., Belokur, M.A., Oishi, K., Takeda, I., Beresnev, V.M., and Sobol’, O.V., Analysis of Local Regions Near Interfaces in Nanostructural Multicomponent Coatings (Ti-Zr-Hf-V-Nb)N, Produced by the Cathodic-Arc-Vapor Deposition from the Arc of the Evaporating Cathode, Physics of Metals and Metallography, 2013, vol. 114, no. 8, pp. 672–680.CrossRefGoogle Scholar
  17. 17.
    Mishra, Aj.K., Samal, S., and Biswas, Kr., Solidification Behavior of Ti-Cu-Fe-Co-Ni High Entropy Alloys, Transactions of the Indian Institute of Metals, 2012, vol. 65, issue 6, pp. 725–730.CrossRefGoogle Scholar
  18. 18.
    Tsai, Ch.-W., Lai, S.-W., Cheng, K.-H., et al., Strong Amorphization of High-Entropy AlBCrSiTi Nitride Film, Thin Solid Films, 2012, vol. 520, issue 7, pp. 2613–2618.CrossRefGoogle Scholar
  19. 19.
    Firstov, S.A., Gorban’, V.F., Krapivka, N.A., and Pechkovskii, E.P., Hardening and Mechanical Properties of Cast High-Entropy Alloys, Composity i Nanostruktury, 2011, no. 2, pp. 5–20.Google Scholar
  20. 20.
    Braic, V., Balaceanu, M., Braic, M.A., Vladescu, A., et al., Characterization of Multi-Principal-Element (TiZrNbHfTa)N and (TiZrNbHfTa)C Coatings for Biomedical Applications, J. Mechanical Behavior of Biomedical Materials, 2012, vol. 10, pp. 197–205.CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Khomenko, A.V. and Prodanov, N.V., Molecular Dynamics Simulations of Ultrathin Water Film Confined between Flat Diamond Plates, Condensed Matter., 2008, vol. 11, no. 4(56), pp. 615–626.Google Scholar
  23. 23.
    Khomenko, A.V., Noise Influence on Solid-Liquid Transition of Ultrathin Lubricant Film, Phys. Lett. A, 2004, vol. 329, no. 1-2, pp. 140–147.CrossRefGoogle Scholar
  24. 30.
    Kotunowicz, T.N., Zukowski, P.V., Fedotova, V.V., Saad, A.M., Larkin, A.V., and Fedotov, A.K., The Features of Real Part of Admittance in the Nanocomposites (Fe45Co45Zr10)(Al2O3)100−x Manufactured by the Ion-Beam Sputtering Technique with Ar Ions, Acta Physica Polonica A, 2011, vol. 120, no. 1, pp. 35–38.Google Scholar
  25. 31.
    Larkin, A.V., Fedotov, A.K., Fedotova, J.A., Kotunowicz, T.N., and Zukowski, P.V., Temperature and Frequency Dependences of Impedance Real Part in the FeCoZr-Doped PZT Nanogranular Composites, Mater. Science-Poland, 2012, vol. 30, issue 2, pp. 75–81.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • A. D. Pogrebnjak
    • 1
  • I. V. Yakushchenko
    • 1
  • G. Abadias
    • 2
  • P. Chartier
    • 2
  • O. V. Bondar
    • 1
  • V. M. Beresnev
    • 3
  • Y. Takeda
    • 4
  • O. V. Sobol’
    • 5
  • K. Oyoshi
    • 4
  • A. A. Andreyev
    • 6
  • B. A. Mukushev
    • 7
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Institut P’Université de Poitiers-CNRS-ENSMA, SP2MIChasseneuil-FuturoscopeFrance
  3. 3.Karazin Khar’kov National UniversityKhar’kovUkraine
  4. 4.Natioal Institute for Material Science (NIMS)IbarakiJapan
  5. 5.Khar’kovskii Polytechnic Institute National Technical UniversityKhar’kovUkraine
  6. 6.National Scientific Center Khar’kovskii Physicotechnical InstituteKhar’kovUkraine
  7. 7.Shakarim Semey State UniversitySemey CityRepublic of Kazakhstan

Personalised recommendations