Journal of Superhard Materials

, Volume 35, Issue 4, pp 195–213 | Cite as

Developments in synthesis, characterization, and application of large, high-quality CVD single crystal diamond

  • Q. Liang
  • Y. F. Meng
  • C. -S. Yan
  • S. Krasnicki
  • J. Lai
  • K. Hemawan
  • H. Shu
  • D. Popov
  • T. Yu
  • W. Yang
  • H. K. Mao
  • R. J. Hemley
Production, Structure, Properties

Abstract

Single crystal diamond synthesis by microwave plasma chemical vapor deposition at rapid growth rate has considerably advanced in the past few years. Developments have been made in growth, optical quality, and mechanical properties. Of the various types of single crystal diamond that can be produced using these techniques, high quality single crystal CVD diamond can be routinely produced, and this material is playing an increasing role in research on materials under extreme conditions. This article highlights recent developments in single crystal CVD diamond synthesis and characterization, as well as various applications in high-pressure materials research.

Keywords

single crystal diamond chemical vapor deposition (CVD) high pressure annealing hardness toughness photoluminescence infrared spectroscopy cathodoluminescence absorption X-ray diffraction X-ray spectroscopy microwave deposition plasma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hall, H.T., The Synthesis of Diamond, J. Chem. Educ., 1961, vol. 38(10), pp. 484–488.CrossRefGoogle Scholar
  2. 2.
    Eversole, W.G., U.S. Patent 3030188, 1961.Google Scholar
  3. 3.
    Jayaraman, A., Diamond Anvil Cell and High Pressure Physical Investigations, Rev. Modern Phys., 1983, vol. 55, pp. 65–108.CrossRefGoogle Scholar
  4. 4.
    Hemley, R.J., Percy W. Bridgman’s Second Century, High Press. Res., 2010, vol. 30, no. 4, 581–619.CrossRefGoogle Scholar
  5. 5.
    Yan, C.S., Vohra, Y.K., Mao, H.K., and Hemley R.J., Very High Growth Rate Chemical Vapor Deposition of Single Crystal Diamond, Proc. Nat. Acad. Sci., 2002, vol. 99, no. 20, pp. 12523–12525.CrossRefGoogle Scholar
  6. 6.
    Ho, S.S., Yan, C.S., Liu, Z., Mao, H.K., and Hemley, R.J., Prospects for Large Single Crystal CVD Diamonds, Indust. Diamond Rev., 2006, vol. 66, no. 10, pp. 28–32.Google Scholar
  7. 7.
    Liang, Q., Chin, C.Y., Lai, J., Yan, C.S., Meng, Y.F., Mao, H.K., and Hemley, R.J., Enhanced Growth of High Quality Single Crystal Diamond by MPCVD at High Gas Pressures, Appl. Phys. Lett., 2009, vol. 94, art. 024103.Google Scholar
  8. 8.
    Chifre, J., Lopez, F., Morenza, J.L., and Esteve, J., Analysis of Contamination in Diamond Films by Secondary Ion Mass Spectroscopy, Diamond Relat. Mater., 1992, vol. 1, pp. 500–503.CrossRefGoogle Scholar
  9. 9.
    Gheeraert, E., Deneuville, A., Brunel, M., and Oberlin, J. C. Tungsten Incorporation in Diamond Thin Films Prepared by the Hot-Filament Technique, ibid., vol. 4,issue 5–6, pp. 504–507.CrossRefGoogle Scholar
  10. 10.
    Ohtake, N. and Yoshikawa, M., Diamond Film Preparation by Arc Discharge Plasma Jet Chemical Vapor Deposition in the Methane Atmosphere, J. Electrochem. Soc., 1990, vol. 137, no. 2, pp. 717–722.CrossRefGoogle Scholar
  11. 11.
    Ohtake, N., Kuriyama, Ya, Yoshikawa, M., Obana, H., Kito, M., and Saito, H., Development of an Arc-Discharge Plasma Apparatus for the High-Rate Synthesis of Diamond, Int. J. Japan Soc. Prec. Eng., 1991, vol. 25, no. 1, pp. 5–10.Google Scholar
  12. 12.
    Characterization of Plasma Process, Bachmann, P.K. and Lydtin, H., Eds., in Materials Research Society Symposium Proceedings, Warrendale: Materials Research Society, 1990.Google Scholar
  13. 13.
    Field, J. The Properties of Natural and Synthetic Diamond, London: Academic, 1992.Google Scholar
  14. 14.
    Sussmann, R.S., Dialm, a New Diamond Material for Optics and Electronics, Indust. Diamond Rev., 1993, vol. 53, pp. 63–71.Google Scholar
  15. 15.
    Cao, G.Z., Schermer, J.J., van Enckevort, W.J.P., et al., Growth of {100} Textured Diamond Films by the Addition of Nitrogen, J. Appl. Phys., 1996, vol. 79, pp. 1357–1364.CrossRefGoogle Scholar
  16. 16.
    Jiang, X. and Jia, C.L., The Coalescence of [001] Diamond Grains Heteroepitaxially Grown on (001) Silicon, Appl. Phys. Lett., 1996, vol. 69, pp. 3902–3904.CrossRefGoogle Scholar
  17. 17.
    Gruen, D.M., Nanocrystalline Diamond Films, Ann. Rev. Mater. Sci., 1999, vol. 29, pp. 211–259.CrossRefGoogle Scholar
  18. 18.
    Spitsyn, B., Bouilov, L.L, and Deryagin, B.V., Vapor Growth of Diamond on Diamond and Other Surfaces, J. Cryst. Growth, 1981, vol. 52, pp. 219–226.CrossRefGoogle Scholar
  19. 19.
    Kamo, M., Sato, Y., Matsumoto, S., and Setaka, N., Diamond Synthesis from Gas Phase in Microwave Plasma, ibid., 1983, vol. 62, pp. 642–644.CrossRefGoogle Scholar
  20. 20.
    Afzal, A., Rego, C.A., Ahmed, W., and Cherry, R.I., HFCVD Diamond Grown with Added Nitrogen: Film Characterization and Gas-Phase Composition Studies, Diamond Relat. Mater., 1998, vol. 7, pp. 1033–1038.CrossRefGoogle Scholar
  21. 21.
    Handbook of Industrial Diamonds and Diamond Films, Prelas, M.A., Popovichi, G., and Bigelow, L.K., Eds., New York: Marcel Dekker, 1998.Google Scholar
  22. 22.
    Yan, C.S., Multiple Twinning and Nitrogen Defect Center in Chemical Vapor Deposited Homoepitaxial Diamond, Ph.D. Dissertation, Birmingham: University of Alabama, 1999.Google Scholar
  23. 23.
    Yan, C.S. and Vohra, Y.K., Multiple Twinning and Nitrogen Defect Center in Chemical Vapor Deposition Deposited Homoepitaxial Diamond, Diamond Relat. Mater., 1999, vol. 8, pp. 2022–2031.CrossRefGoogle Scholar
  24. 24.
    Tamor, M. and Everson, M.P., On the Role of Penetration Twins in the Morphological Development of Vapor-Grown Diamond Films, J. Mater. Res., 1994, vol. 9, pp. 1839–1847.CrossRefGoogle Scholar
  25. 25.
    Wild, C., Kohl, R., Herres, N., Müller-Sebert, W., and Koidl, P., Oriented CVD Diamond Films: Twin Formation, Structure and Morphology, Diamond Relat. Mater., 1994, vol. 3, pp. 373–381.CrossRefGoogle Scholar
  26. 26.
    Hemawan, K.W., Yan, C.S., Liang, Q., Lai, J., Meng, Y.F., Krasnicki, S., Mao, H.K., and Hemley, R.J. Hot Spot Formation in Microwave Plasma CVD Diamond Synthesis, IEEE Trans. Plasma Sci., 2011, vol. 39, pp. 2790–2791.CrossRefGoogle Scholar
  27. 27.
    Meng, Y.F., Yan, C.S., Mao H. K., and Hemley, R.J., Enhanced Optical Properties of Chemical Vapor Deposited Single Crystal Diamond by Low-Pressure High-Temperature Annealing, Proc. Nat. Acad. Sci., 2008, vol. 105, pp. 17620–17625.CrossRefGoogle Scholar
  28. 28.
    Liou, Y., Inspektor, A., Weimer, R., Knight, D., and Messier, R., The Effect of Oxygen in Diamond Deposition by Microwave Plasma Enhanced Chemical Vapour Deposition, J. Mater. Res., 1990, vol. 5, no. 11, pp. 2305–2312.CrossRefGoogle Scholar
  29. 29.
    Fuchs, F., Wild, C., Schwarz, K., Muller-Sebert, W., and Koidl, P., Hydrogen-Induced Vibrational and Electronic Transitions in Chemical Vapor Deposited Diamond, Identified by Isotopic Substitution, Appl. Phys. Lett., 1995, vol. 66, pp. 177–179.CrossRefGoogle Scholar
  30. 30.
    Tallaire, A., Achard, J., Silva, F., Sussmann, R.S., Gicquel, A., and Rzepka, E., Oxygen Plasma Pre-Treatments for High Quality Homoepitaxial CVD Diamond Deposition, Phys. Stat. Sol. A, 2004, vol. 241, no. 10, pp. 2419–2424.CrossRefGoogle Scholar
  31. 31.
    Martineau P.M., Lawson S.C., Lawson A.J., Quinn S.J., Evans J.F., and Crowder M.J., Identification of Synthetic Diamond Grown Using Chemical Vapor Deposition (CVD), Gems Gemol., 2004, vol. 40, pp. 2–25.CrossRefGoogle Scholar
  32. 32.
    Smith, C.P., Bosshart G., Ponahlo J. et al., GE POL Diamonds: Before and After, ibid., 2000, vol. 36, pp. 192–215.CrossRefGoogle Scholar
  33. 33.
    Weerdt, F.D. and Van Royen, J., Investigation of Seven Diamonds HPHT Treated by NovaDiamond, J. Gemm., 2000, vol. 7, pp. 201–208.Google Scholar
  34. 34.
    Shiryaev, A.A., Hutchison, M.T., Dembo, K.A., Dembo, A.T., Iakoubovskii, K., Klyuev, Yu.A., and Naletov A.M., High Temperature-High Pressure Annealing of Diamond Small Angle X-Ray Scattering and Optical Study, Physica B, 2001, vols.308–310, pp. 598–603.CrossRefGoogle Scholar
  35. 35.
    Collins, A.T., Connor, A., Ly, C.-H., Shareef, A., and Spear, P.M., High-Temperature Annealing of Optical Centers in Type I Diamond, J. Appl. Phys., 2005, vol. 97, no. 8, art. 083517.Google Scholar
  36. 36.
    Weerdt, F.D. and Collins, A.T., HPHT Annealing of Natural Diamond, New Diamond and Frontier Carbon Technolo-gy, 2007, vol. 17, no. 2, pp. 91–103.Google Scholar
  37. 37.
    Charles, S.J., Butler, J.E., Feygelson, B.N., Newton, M.E., Carroll, D.L., Steeds, J.W., Darwish, H., Yan, C.-S., Mao, H.K., and Hemley, R.J., Characterization of Nitrogen-Doped Chemical Vapor Deposited Single Crystal Diamond before and after High Pressure, High Temperature Annealing, Phys. Stat. Sol., 2004, vol. 242, pp. 2473–2485.CrossRefGoogle Scholar
  38. 38.
    Woods, G.S. and Collins, A.T., Infrared Absorption Spectra of Hydrogen Complexes in Type I Diamonds, J. Phys. Chem. Solids, 1983, vol. 44, pp. 471–475.CrossRefGoogle Scholar
  39. 39.
    Glover, C., Newton, M.E., Martineau, P., Twitchen, D.J., and Baker, J.M, Hydrogen Incorporation in Diamond: The Nitrogen-Vacancy-Hydrogen Complex, Phys. Rev. Lett., 2003, vol. 90, art. 185507.Google Scholar
  40. 40.
    Novikov, N.V., Sirota, Yu.V., Mal’nev, V.I., and Petrusha, I.A., Mechanical Properties of Diamond and Cubic BN at Different Temperatures and Deformation Rates, Diamond Relat. Mater., 1993, vol. 2, pp. 1253–1256.CrossRefGoogle Scholar
  41. 41.
    Drory, M.D., Dauskardt, R.H., Kant, A., and Ritchie, R.O., Fracture of Synthetic Diamond, J. Appl. Phys., 1995, vol.78, pp. 3083–3088.CrossRefGoogle Scholar
  42. 42.
    Novikov, N.V. and Dub, S.N., Hardness and Fracture Toughness of CVD Diamond Film, Diamond Relat. Mater., 1996, vol. 5, pp. 1026–1030.CrossRefGoogle Scholar
  43. 43.
    Yan, C.S., Mao, H.K., Li, W., Qian, J., Zhao, Y., and Hemley, R.J., Ultrahard Single Crystal Diamond from Chemical Vapor Deposition, Phys. Stat.Sol.(a), 2004, vol. 201, pp. 25–27.CrossRefGoogle Scholar
  44. 44.
    Liang, Q., Yan, C.S., Meng, Y., Lai, J., Krasnicki, S., Mao, H.K., and Hemley, R.J., Recent Advances in High-Growth Rate Single-Crystal CVD Diamond, Diamond Relat. Mater., 2009, vol. 18, pp. 698–703.CrossRefGoogle Scholar
  45. 45.
    Liang, Q., Yan C.S., Meng, Y., Lai, J., Krasnicki, S., Mao, H.K., and Hemley R.J., Enhancing the Mechanical Properties of CVD Single Crystal Diamond, J. Phys. Condens. Matt., 2009, vol. 21, art. 364215.Google Scholar
  46. 46.
    Novikov, N.V., Dub, S.N, and Mal’nev, V.I., High-Temperature Fracture Toughness of Monocrystalline Diamonds, J. Hard. Mater., 1993, vol. 4, pp. 19–27.Google Scholar
  47. 47.
    Patridge, G.P., May, P.W., Rega, C.A., and Ashfald, M.N.R., Potential for Diamond Fibres and Diamond Fibre Composites, Mat. Sci. Tech., 1994, vol. 10, pp. 505–512.Google Scholar
  48. 48.
    Locher, R., Wild, C., Herres, N., Behr, D., and Koidl, P., Nitrogen Stabilized 〈100〉 Texture in Chemical Vapor Deposited Diamond Films, Appl. Phys. Lett., 1994, vol. 65, pp. 34–36.CrossRefGoogle Scholar
  49. 49.
    Burns, R.C., Cvetkovic, V., Dodge, C.N., Evans, D.J.F., Rooney, M.-L.T., Spear, P.M., and Welbourn, C.M., Growth-Sector Dependence of Optical Features in Large Synthetic Diamonds, J. Cryst. Growth, 1990, vol. 104, pp. 257–279.CrossRefGoogle Scholar
  50. 50.
    Ramamurti, R., Becker, M., Schuelke, T., Grotjohn, T., Reinhard, D., Swain G., and Asmussen, J., Boron-Doped Diamond Deposited by Microwave Plasma-Assisted CVD at Low and High Pressures, Diamond Relat. Mater., 2008, vol. 17, pp. 481–485.CrossRefGoogle Scholar
  51. 51.
    Tsuno, T., Tomikawa, T., Shikata, S., Imai, T., and Fujimori, N., Diamond (001) Single-Domain 2×1 Surface Grown By Chemical Vapor Deposition, Appl. Phys. Lett., 1994, vol. 64, pp. 572–574.CrossRefGoogle Scholar
  52. 52.
    Anderson, G.C., Prawer, S., Johnston, P., and McCulloch, D., The Effect of Carbon and Nitrogen Implantation on the Abrasion Resistance of Type IIa (110) Diamond, Nucl. Instrum. Meth. Phys Res. B, 1993, vols. 80–81, pp. 1451–1455.CrossRefGoogle Scholar
  53. 53.
    Meng, Y. and Anthony, T.R., U.S. Patent 6322891, 2001.Google Scholar
  54. 54.
    Anthony, T.R., Stresses Generated by Impurities in Diamond, Diamond Relat. Mater., 1995, vol. 4, pp. 1346–1352.CrossRefGoogle Scholar
  55. 55.
    Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., and Tischler, J.Z., Three-Dimensional X-Ray Structural Microscopy with Submicrometer Resolution, Nature, 2002, vol. 415, no. 6874, pp. 887–890.CrossRefGoogle Scholar
  56. 56.
    Weir, C.E., Lippincott, E.R., Van Valkenburg, A., and Bunting, E.N., Infrared Studies in the 1-Micron to 15-Micron Region to 30,000 Atmospheres, J. Res. Nat. Bur. Stand. Sec. A: Phys. Chem., 1959, vol. 63.Google Scholar
  57. 57.
    Hemley, R.J. and Ashfold, M.N., The Revealing Role of Pressure in the Condensed Matter Sciences, Phys. Today, 1998, vol. 51, pp. 26–32.CrossRefGoogle Scholar
  58. 58.
    Hemley, R.J., A Pressing Matter, Phys. World, 2006, vol. 19, pp. 26–30.Google Scholar
  59. 59.
    Goncharov, A.F., Hemley, R.J., Mao, H.K., and Shu, J., New High-Pressure Excitations in Parahydrogen, Phys. Rev. Lett., 1998, vol. 80, pp. 101–104.CrossRefGoogle Scholar
  60. 60.
    Merkel, S., Hemley, R.J., and Mao, H.K, Finite Element Modeling of Diamond Deformation at Multimegabar Pressures, Appl. Phys. Lett., 1999, vol. 74, no.5, pp. 656–658.CrossRefGoogle Scholar
  61. 61.
    Takano, K.J. and Wakatsuki, M., An Optical High-Pressure-Cell with Spherical Sapphire Anvils, Rev. of Sci. Instruments, 1991, vol. 62, pp. 1576–1580.CrossRefGoogle Scholar
  62. 62.
    Xu, J., Mao, H., Hemley, R.J., and Hines E., Large Volume High-Pressure Cell with Supported Moissanite Anvils, ibid., 2004, vol. 75, pp. 1034–1038.CrossRefGoogle Scholar
  63. 63.
    Mao, H.K. and Hemley, R.J., Ultrahigh-Pressure Transitions in Solid Hydrogen, Rev. Modern Phys., 1994, vol. 66, pp. 671–692.CrossRefGoogle Scholar
  64. 64.
    Dewaele, A., Loubeyre, P., Andre, R., and Hartwig, J., An X-ray Topographic Study of Diamond Anvils: Correlation between Defects and Helium Diffusion, J. Appl. Phys., 2006, vol. 99, art. 104906.Google Scholar
  65. 65.
    Hemley, R.J., Mao, H.-K., Goncharov, A.F., Hanfland, M., and Struzkin, V., Synchrotron Infrared Spectroscopy to 0.15 eV of h-2 and d-2 at Megabar Pressures, Phys. Rev. Lett., 1996, vol. 76, pp. 1667–1670.CrossRefGoogle Scholar
  66. 66.
    Hemley, R.J. and Mao, H.K., Progress in Cryocrystals at Megabar Pressures, J. Low Temp. Phys., 2001, vol. 122, pp. 331–344.CrossRefGoogle Scholar
  67. 67.
    Gregoryanz, E., Goncharov, A.F., Matsuishi, K., Mao, H.K., and Hemley, R.J., Raman Spectroscopy of Hot Dense Hydrogen, Phys. Rev. Lett., 2003, vol. 90, art. 175701.Google Scholar
  68. 68.
    Mills, R.L., Liebenberg, D.H., Bronson, J.C., and Schmidt, L.C., Procedure for Loading Diamond Cells with High-Pressure Gas, Rev. Sci. Instrum., 1980, vol. 51, pp. 891–895.CrossRefGoogle Scholar
  69. 69.
    Eremets, M.I., Megabar High-Pressure Cells for Raman Measurements, J. Raman Spectr., 2003, vol. 34, pp. 515–518.CrossRefGoogle Scholar
  70. 70.
    Sun, L., Ruoff, A.L., and Stupian, G., Convenient Optical Pressure Gauge for Multimegabar Pressures Calibrated to 300 GPa, Appl. Phys. Lett., 2005, vol. 86, art. 014103.Google Scholar
  71. 71.
    Zha, C.S., Krasnicki, S., Meng, Y.F., Yan, C.S., Lai, J., Liang, Q., Mao, H.K., Hemley, R.J., Composite Chemical Vapor Deposition Diamond Anvils for High-Pressure/High-Temperature Experiments, High Pressure Research, 2009, vol. 29, no. 3, pp. 317–324.CrossRefGoogle Scholar
  72. 72.
    Wang, S., Meng, Y., Ando, N., Tate, M., Krasnicki, S., Yan, C., Liang, Q., Lai, J., Mao, H., Gruner, S.M., and Hemley, R.J., Single-Crystal CVD Diamonds as Small-Angle X-Ray Scattering Windows for High-Pressure Research, J. Appl. Crystallography, 2011, vol. 45, pp. 453–457.CrossRefGoogle Scholar
  73. 73.
    Ando, N., Chenevier, P., Novak, M., Tate, M.W., and Gruner, S.M., High Hydrostatic Pressure Small-Angle X-Ray Scattering Cell for Protein Solution Studies Featuring Diamond Windows and Disposable Sample Cells, ibid., 2008, vol. 41, pp. 167–175.CrossRefGoogle Scholar
  74. 74.
    Shiryaev, A. A., SANS from Defects in Diamond, ibid., 2007, vol. 40, pp. s116–s120.CrossRefGoogle Scholar
  75. 75.
    Shiryaev, A.A. and Boesecke, P., Small-Angle X-ray and Neutron Scattering from Diamond Single Crystals, http://arxiv.org/abs/1110.6270, 2011.Google Scholar
  76. 76.
    Gaukroger, M. P., Martineau, P.M., Crowder, M.J., Friel, I., Williams, S.D., and Twitchen, D.J., X-Ray Topography Studies of Dislocations in Single Crystal CVD Diamond, Diamond Relat. Mater., 2008, vol. 17, pp. 262–269.CrossRefGoogle Scholar
  77. 77.
    Popov, D., Personal Communication, 2012.Google Scholar
  78. 78.
    Ando, N., Barstow, B., Baase, W., Fields, A., Brian, A., Matthews, W., and Gruner, S.M., Structural and Thermodynamic Characterization of T4 Lysozyme Mutants and the Contribution of Internal Cavities to Pressure Denaturation, Biochem., 2008, vol. 47, pp. 11097–11109.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • Q. Liang
    • 1
  • Y. F. Meng
    • 1
  • C. -S. Yan
    • 1
  • S. Krasnicki
    • 1
  • J. Lai
    • 1
  • K. Hemawan
    • 1
  • H. Shu
    • 1
  • D. Popov
    • 2
  • T. Yu
    • 1
  • W. Yang
    • 3
  • H. K. Mao
    • 1
  • R. J. Hemley
    • 1
  1. 1.Geophysical LaboratoryCarnegie Institution of WashingtonWashingtonUSA
  2. 2.Geophysical Laboratory, Carnegie Institution of WashingtonHPCATArgonneUSA
  3. 3.Geophysical Laboratory, Carnegie Institution of WashingtonHPSynCArgonneUSA

Personalised recommendations