Journal of Superhard Materials

, Volume 32, Issue 3, pp 192–204 | Cite as

Predicting new superhard phases

Theory of Hardness and Superhard Materials Production, Structure, Properties

Abstract

The search for new superhard materials is of great importance in view of their major roles played for the fundamental science and the industrial applications. Recent experimental synthesis has made several great successes, but the difficulties associated with synthesis in general remain. Materials design technique is greatly desirable as a request to assist experiment. In this paper, two rational theoretical methods of design of superhard materials have been reviewed: (i) substitutional method, which is successful in some cases, but limited to the known chemically related phases, and (ii) global free energy minimization method, which can be applied to large scale of materials with the only information of chemical compositions. The successful applications have been described and the main principles are summarized.

Key words

superhard materials crystal structure prediction substitutional method free energy minimization method first-principles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Šimùnek, A. and Vackár, J., Hardness of Covalent and Ionic Crystals: First-Principle Calculations, Phys. Rev. Lett., 2006, vol. 96, no. 8, pp. 085501 1–4.CrossRefGoogle Scholar
  2. 2.
    Zhang, S., Sun, D., Fu, Y., and Du, H., Recent Advances of Superhard Nanocomposite Coatings: a Review, Surface & Coatings Technology, 2003, vol. 167, nos. 2–3, pp. 113–119.CrossRefGoogle Scholar
  3. 3.
    Kaner, R.B., Gilman, J.J., and Tolbert, S.H., Designing Superhard Materials, Science, 2005, vol. 308, no. 5726, pp. 1268–1269.CrossRefGoogle Scholar
  4. 4.
    Knittle, E., Kaner, R.B., Jeanloz, R., and Cohen, M.L., High-Pressure Synthesis, Characterization, and Equation of State of Cubic C-BN Solid Solutions, Phys. Rev. B, 1995, vol. 51, no. 18, pp. 12149–12156.CrossRefGoogle Scholar
  5. 5.
    Solozhenko, V.L., Andrault, D., Fiquet, G., Mezouar, M., and Rubie, D.C., Synthesis of Superhard Cubic BC2N, Appl. Phys. Lett., 2001, vol. 78, no. 10, pp. 1385–1387.CrossRefGoogle Scholar
  6. 6.
    Komatsu, T., Nomura, M., Kakudate, Y., and Fujiwara, S., Synthesis and Characterization of a Shock-Synthesized Cubic B-C-N Solid Solution of Composition BC2.5N, J. Mater. Chem., 1996, vol. 6, no. 11, pp. 1799–1803.CrossRefGoogle Scholar
  7. 7.
    Zhao, Y., He, D.W., Daemen, L.L., Shen, T.D., Schwarz, R.B., Zhu, Y., Bish, D.L., Huang, J., Zhang, J., Shen, G., Qian, J., and Zerda, T.W., Superhard B-C-N Materials Synthesized in Nanostructured Bulks, J. Mater. Res., 2002, vol. 17, no. 12, pp. 3139–3145.CrossRefGoogle Scholar
  8. 8.
    Nakano, S., Akaishi, M., Sasaki, T., and Yamaoka, S., Segregative Crystallization of Several Diamond-Like Phases from the Graphitic BC2N without an Additive at 7.7 GPa, Chem. Mater., 1994, vol. 6, no. 12, pp. 2246–2251.CrossRefGoogle Scholar
  9. 9.
    He, J.L., Tian, Y.J., Yu, D.L., Wang, T.S., Liu, S.M., Guo, L.C., Li, D.C., Jia, X.P., Chen, L.X., and Zou, G.T., Orthorhombic B2CN Crystal Synthesized by High Pressure and Temperature, Chem. Phys. Lett., 2001, vol. 340, nos. 5–6, pp. 431–436.CrossRefGoogle Scholar
  10. 10.
    Solozhenko, V.L., Kurakevych, O.O., Andrault, D., Le Godec, Y., and Mezouar, M., Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamond-Like BC5, Phys. Rev. Lett., 2009, vol. 102, no. 1, pp. 015506 1–4.CrossRefGoogle Scholar
  11. 11.
    Hubert, H., Garvie, L.A.J., Devouard, B., Buseck, P.R., Petuskey, W.T., and McMillan, P.F., High-Pressure, High-Temperature Synthesis and Characterization of Boron Suboxide (B6O), Chem. Mater, 1998, vol. 10, no. 6, pp. 1530–1537.CrossRefGoogle Scholar
  12. 12.
    Oganov, A.R., Chen, J.H., Gatti, C., Ma, Y.Z., Ma, Y.M., Glass, C.W., Liu, Z.X., Yu, T., Kurakevych, O.O., and Solozhenko, V.L., Ionic High-Pressure Form of Elemental Boron, Nature, 2009, vol. 457, no. 7231, pp. 863–867.CrossRefGoogle Scholar
  13. 13.
    Solozhenko, V.L., Kurakevych, O.O., and Oganov, A.R., On the Hardness of a New Boron Phase, Orthorhombic γ-B28, J. Superhard Mater., 2008, vol. 30, no. 6, pp. 428–429.CrossRefGoogle Scholar
  14. 14.
    Godec, Y.L., Kurakevych, O.O., Munsch, P., Garbarino, G., and Solozhenko, V.L., Equation of State of Orthorhombic Boron, ã-B28, Solid State Commun., 2009, vol. 149, nos. 33–34, pp. 1356–1358.CrossRefGoogle Scholar
  15. 15.
    Bullett, D.W., Structure and Bonding in Crystalline Boron and B12C3, J. Phys. C: Solid State Phys., 1982, vol. 15, pp. 415–426.CrossRefGoogle Scholar
  16. 16.
    Kurakevych, O.O. and Solozhenko, V.L., Rhombohedral Boron Subnitride, B13N2, by X-ray Powder Diffraction, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2007, vol. 63, no. 9, pp. i80–i82.CrossRefGoogle Scholar
  17. 17.
    Crowhurst, J.C., Goncharov, A.F., Sadigh, B., Evans, C.L., Morrall, P.G., Ferreira, J.L., and Nelson, A.J., Synthesis and Characterization of the Nitrides of Platinum and Iridium, Science, 2006, vol. 311, no. 5765, pp. 1275–1278.CrossRefGoogle Scholar
  18. 18.
    Gregoryanz, E., Sanloup, C., Somayazulu, M., Badro, J., Fiquet, G., Mao, H., and Hemley, R.J., Synthesis and Characterization of a Binary Noble Metal Nitride, Nat. Mater., 2004, vol. 3, no. 5, pp. 294–297.CrossRefGoogle Scholar
  19. 19.
    Crowhurst, J.C., Goncharov, A., Sadigh, B., Zaug, J., Aberg, D., Meng, Y., and Prakapenka, V.B., Synthesis and Characterization of Nitrides of Iridium and Palladium, J. Mater. Res., 2008, vol. 23, no. 1, pp. 1–5.CrossRefGoogle Scholar
  20. 20.
    Young, A.F., Sanloup, C., Gregoryanz, E., Scandolo, S., Hemley, R.J., and Mao, H., Synthesis of Novel Transition Metal Nitrides IrN2 and OsN2, Phys. Rev. Lett., 2006, vol. 96, no. 15, pp. 155501 1–4.CrossRefGoogle Scholar
  21. 21.
    Jiang, C., Lin, Z., and Zhao, Y., Thermodynamic and Mechanical Stabilities of Tantalum Nitride, Phys Rev Lett, 2009, vol. 103, no. 18, pp. 185501 1–4.CrossRefGoogle Scholar
  22. 22.
    Ono, S., Kikegawa, T., and Ohishi, Y., A High-Pressure and High-Temperature Synthesis of Platinum Carbide, Solid State Commun., 2005, vol. 133, no. 1, pp. 55–59.CrossRefGoogle Scholar
  23. 23.
    Tolbert, S.H., Cumberland, R.W., Clark, S.M., Gilman, J.J., Weinberger, M.B., and Kaner, R.B., Osmium Diboride, an Ultra-Incompressible, Hard Material, J. Am. Chem. Soc., 2005, vol. 127, no. 20, pp. 7264–7265.CrossRefGoogle Scholar
  24. 24.
    Gu, Q., Krauss, F., and Steurer, W., Transition Metal Borides: Superhard versus Ultra-Incompressible, Adv. Mater., 2008, vol. 20, no. 19, pp. 3620–3626.CrossRefGoogle Scholar
  25. 25.
    Chung, H.Y., Weinberger, M.B., Levine, J.B., Kavner, A., Yang, J.M., Tolbert, S.H., and Kaner, R.B., Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure, Science, 2007, vol. 316, no. 5823, pp. 436–439.CrossRefGoogle Scholar
  26. 26.
    Qin, J.Q., He, D.W., Wang, J.H., Fang, L.M., Lei, L., Li, Y.J., Hu, J., Kou, Z.L., and Bi, Y., Is Rhenium Diboride a Superhard Material?, Adv. Mater., 2008, vol. 20, no. 24, pp. 4780–4783.CrossRefGoogle Scholar
  27. 27.
    Dubrovinskaia, N., Dubrovinsky, L., and Solozhenko, V.L., Comment on “Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure”, Science, 2007, vol. 318, no. 5856, p. 1550.CrossRefGoogle Scholar
  28. 28.
    Chung, H.Y., Yanga, J.M., Tolbert, S.H., and Kanerb, R.B., Anisotropic Mechanical Properties of Ultra-Incompressible, Hard Osmium Diboride, J. Mater. Res., 2008, vol. 23, no. 6, pp. 1797–1801.CrossRefGoogle Scholar
  29. 29.
    Wang, M., Li, Y., Cui, T., Ma, Y., and Zou, G., Origin of Hardness in WB4 and Its Implications for ReB4, TaB4, MoB4, TcB4, and OsB4, Appl. Phys. Lett., 2008, vol. 93, no. 10, pp. 101905 1–3.Google Scholar
  30. 30.
    Gao, F., He, J., Wu, E., Liu, S., Yu, D., Li, D., Zhang, S., and Tian, Y., Hardness of Covalent Crystals, Phys. Rev. Lett., 2003, vol. 91, no. 1, pp. 015502 1–4.CrossRefGoogle Scholar
  31. 31.
    He, J., Wu, E., Wang, H., Liu, R., and Tian, Y., Ionicities of Boron-Boron Bonds in B12 Icosahedra, Phys. Rev. Lett., 2005, vol. 94, no. 1, pp. 015504 1–4.Google Scholar
  32. 32.
    Gao, F.M., Theoretical Model of Intrinsic Hardness, Phys. Rev. B, 2006, vol. 73, no. 13, p. 132104.CrossRefGoogle Scholar
  33. 33.
    Li, K., Wang, X., Zhang, F., and Xue, D., Electronegativity Identification of Novel Superhard Materials, Phys. Rev. Lett., 2008, vol. 100, no. 23, pp. 235504 1–4.Google Scholar
  34. 34.
    Zhang, Y., Sun, H., and Chen, C.F., Superhard Cubic BC2N Compared to Diamond, Phys. Rev. Lett., 2004, vol. 93, no. 19, pp. 195504 1–4.CrossRefGoogle Scholar
  35. 35.
    Guo, X., Li, L., Liu, Z., Yu, D., He, J., Liu, R., Xu, B., Tian, Y., and Wang, H.T., Hardness of Covalent Compounds: Roles of Metallic Component and d Valence Electrons, J. Appl. Phys., 2008, vol. 104, no. 2, pp. 023503 1–7.CrossRefGoogle Scholar
  36. 36.
    Gao, F., Hou, L., and He, Y., Origin of Superhardness in Icosahedral B12 Materials, J. Phys. Chem. B, 2004, vol. 108, no. 35, pp. 13069–13073.CrossRefGoogle Scholar
  37. 37.
    Gao, F., Hardness Estimation of Complex Oxide Materials, Phys. Rev. B, 2004, vol. 69, no. 9, pp. 094113 1–6.CrossRefGoogle Scholar
  38. 38.
    Mukhanov, V.A., Kurakevych, O.O., and Solozhenko, V.L., Hardness of Materials at High Temperature and High Pressure, Philos. Mag., 2009, vol. 89, no. 25, pp. 2117–2127.CrossRefGoogle Scholar
  39. 39.
    Mukhanov, V.A., Kurakevych, O.O., and Solozhenko, V.L., Thermodynamic Aspects of Materials’ Hardness: Prediction of Novel Superhard High-Pressure Phases, Int. J. High Pressure Research, 2008, vol. 28, no. 4, pp. 531–537.CrossRefGoogle Scholar
  40. 40.
    Gao, F., Xu, R., and Liu, K., Origin Of Hardness in Nitride Spinel Materials, Phys. Rev. B, 2005, vol. 71, no. 5, pp. 052103 1–4.CrossRefGoogle Scholar
  41. 41.
    Cohen, M.L., Calculation of Bulk Moduli of Diamond and Zinc-Blende Solids, Phys. Rev. B, 1985, vol. 32, no. 12, pp. 7988–7991.CrossRefGoogle Scholar
  42. 42.
    Liu, A.Y. and Cohen, M.L., Prediction of New Low Compressibility Solids, Science, 1989, vol. 245, no. 4920, pp. 841–842.CrossRefGoogle Scholar
  43. 43.
    Marton, D., Boyd, K.J., Al-Bayati, A.H., Todorov, S.S., and Rabalais, J.W., Carbon Nitride Deposited Using Energetic Species: A Two-Phase System, Phys. Rev. Lett., 1994, vol. 73, no. 1, pp. 118–121.CrossRefGoogle Scholar
  44. 44.
    Niu, C., Lu, Y.Z., and Lieber, C.M., Experimental Realization of the Covalent Solid Carbon Nitride, Science, 1993, vol. 261, no. 5119, pp. 334–337.CrossRefGoogle Scholar
  45. 45.
    Yu, K.M., Cohen, M.L., Haller, E.E., Hansen, W.L., Liu, A.Y., and Wu, I.C., Observation of Crystalline C3N4, Phys. Rev. B, 1994, vol. 49, no. 7, pp. 5034–5037.CrossRefGoogle Scholar
  46. 46.
    Sjöström, H., Stafström, S., Boman, M., and Sundgren, J.-E., Superhard and Elastic Carbon Nitride Thin Films Having Fullerene-Like Microstructure, Phys. Rev. Lett., 1995, vol. 75, no. 7, pp. 1336–1339.CrossRefGoogle Scholar
  47. 47.
    Wixom, M.R., Chemical Preparation and Shock Wave Compression of Carbon Nitride Precursors, J. Am. Ceram. Soc., 1990, vol. 73, no. 7, pp. 1973–1978.CrossRefGoogle Scholar
  48. 48.
    Montigaud, H., Tanguy, B., Demazeau, G., Alves, I., and Courjault, S., C3N4: Dream or Reality? Solvothermal Synthesis as Macroscopic Samples of the C3N4 Graphitic Form, J. Mater. Science, 2000, vol. 35, no. 10, pp. 2547–2552.CrossRefGoogle Scholar
  49. 49.
    Peng, Y.G., Ishigaki, T., and Horiuchi, S., Cubic C3N4 Particles Prepared in an Induction Thermal Plasma, Appl. Phys. Lett., 1998, vol. 73, no. 25, pp. 3671–3673.CrossRefGoogle Scholar
  50. 50.
    Cao, C.B., Lv, Q., and Zhu, H.S., Carbon Nitride Prepared by Solvothermal Method, Diam. Relat. Mater., 2003, vol. 12, nos. 3–7, p. 1070.CrossRefGoogle Scholar
  51. 51.
    Zhang, Z., Leinenweber, K., Bauer, M., Garvie, L.A.J., McMillan, P.F., and Wolf, G.H., High-Pressure Bulk Synthesis of Crystalline C6N9H3. HCl: A Novel C3N4 Graphitic Derivative, J. Am. Chem. Soc, 2001, vol. 123, no. 32, pp. 7788–7796.CrossRefGoogle Scholar
  52. 52.
    Mo, S.-D., Ouyang, L., Ching, W.Y., Tanaka, I., Koyama, Y., and Riedel, R., Interesting Physical Properties of the New Spinel Phase of Si3N4 and C3N4, Phys. Rev. Lett., 1999, vol. 83, no. 24, pp. 5046–5049.CrossRefGoogle Scholar
  53. 53.
    Teter, D.M. and Hemley, R.J., Low-Compressibility Carbon Nitrides, Science, 1996, vol. 271, no. 5245, pp. 53–55.CrossRefGoogle Scholar
  54. 54.
    Gao, F., Klug, D.D., and Tse, J.S., Theoretical Study of New Superhard Materials: B4C3, J. Appl. Phys., 2007, vol. 102, no. 8, pp. 084311 1–5.CrossRefGoogle Scholar
  55. 55.
    Matar, S.F. and Mattesini, M., Ab initio Search of Carbon Nitrides, Isoelectronic with Diamond, Likely to Lead to New Ultra-Hard Materials, Comptes Rendus de l’Académie des Sciences. Series IIC. Chemistry, 2001, vol. 4, no. 4, pp. 255–272.CrossRefGoogle Scholar
  56. 56.
    Sun, J., Zhou, X.F., Qian, G.R., Chen, J., Fan, Y.X., Wang, H.T., Guo, X.J., He, J.L., Liu, Z.Y., and Tian, Y.J., Chalcopyrite Polymorph for Superhard BC2N, Appl. Phys. Lett., 2006, vol. 89, no. 15, pp. 151911 1–3.Google Scholar
  57. 57.
    Luo, X., Guo, X., Xu, B., Wu, Q., Hu, Q., Liu, Z., He, J., Yu, D., Tian, Y., and Wang, H.T., Body-Centered Superhard BC2N Phases from First Principles, Phys. Rev. B, 2007, vol. 76, no. 9, pp. 941031–6.Google Scholar
  58. 58.
    Luo, X., Guo, X., Liu, Z., He, J., Yu, D., Xu, B., Tian, Y., and Wang, H.T., First-Principles Study of Wurtzite BC2N, Phys. Rev. B, 2007, vol. 76, no. 9, pp. 92107 1–4.Google Scholar
  59. 59.
    Zhou, X.F., Sun, J., Fan, Y.X., Chen, J., Wang, H.T., Guo, X., He, J., and Tian, Y., Most Likely Phase of Superhard BC2N by ab initio Calculations, Phys. Rev. B, 2007, vol. 76, no. 10, pp. 100101 1–4.Google Scholar
  60. 60.
    Zhou, X.F., Sun, J., Qian, Q.R., Guo, X.J., Liu, Z.Y., Tian, Y.J., and Wang, H.T., A Tetragonal Phase of Superhard BC2N, J. Appl. Phys., 2009, vol. 105, no. 9, pp. 093521 1–4.CrossRefGoogle Scholar
  61. 61.
    Yu, R., Zhan, Q., and Zhang, X.F., Elastic Stability and Electronic Structure of Pyrite Type PtN: A Hard Semiconductor, Appl. Phys. Lett., 2006, vol. 88, no. 5, pp. 051913 1–3.CrossRefGoogle Scholar
  62. 62.
    Young, A.F., Montoya, J.A., Sanloup, C., Lazzeri, M., Gregoryanz, E., and Scandolo, S., Interstitial Dinitrogen Makes PtN2 an Insulating Hard Solid, Phys. Rev. B, 2006, vol. 73, no. 15, pp. 153102 1–4.CrossRefGoogle Scholar
  63. 63.
    von Appen, J., Lumey, M.W., and Dronskowski, R., Mysterious Platinum Nitride, Angew. Chem. Int. Ed., 2006, vol. 45, no. 26, pp. 4365–4368.CrossRefGoogle Scholar
  64. 64.
    Chen, Z.W., Guo, X.J., Liu, Z.Y., Ma, M.Z., Jing, Q., Li, G., Zhang, X.Y., Li, L.X., Wang, Q., and Tian, Y.J., Crystal Structure and Physical Properties of OsN2 and PtN2 in the Marcasite Phase, Phys. Rev. B, 2007, vol. 75, no. 5, pp. 54103 1–4.Google Scholar
  65. 65.
    Wang, Y.X., Arai, M., Sasaki, T., and Fan, C.Z., Ab initio Study of Monoclinic Iridium Nitride as a High Bulk Modulus Compound, Phys. Rev. B, 2007, vol. 75, no. 10, pp. 104110 1–6.CrossRefGoogle Scholar
  66. 66.
    Yu, R., Zhan, Q., and De Jonghe, L.C., Crystal Structures of and Displacive Transitions in OsN2, IrN2, RuN2, and RhN2 Angew. Chem. Int. Ed., 2007, vol. 46, no. 7, pp. 1136–1140.CrossRefGoogle Scholar
  67. 67.
    Aberg, D., Sadigh, B., Crowhurst, J., and Goncharov, A.F., Thermodynamic Ground States of Platinum Metal Nitrides, Phys. Rev. Lett., 2008, vol. 100, no. 9, pp. 095501 1–4.CrossRefGoogle Scholar
  68. 68.
    Gou, H.Y., Hou, L., Zhang, J.W., Sun, G.F., Gao, L.H., and Gao, F.M., Theoretical Hardness of PtN2 with Pyrite Structure, Appl. Phys. Lett., 2006, vol. 89, no. 14, pp. 141910 1–3.CrossRefGoogle Scholar
  69. 69.
    Zhang, M., Wang, M., Cui, T., Ma, Y., Niu, Y., and Zou, G., Electronic Structure, Phase Stability, and Hardness of the Osmium Borides, Carbides, Nitrides, and Oxides: First-Principles Calculations, J. Phys. Chem. Solids, 2008, vol. 69, no. 8, pp. 2096–2102.CrossRefGoogle Scholar
  70. 70.
    Gou, H., Hou, L., Zhang, J., and Gao, F., Pressure-Induced Incompressibility of ReC and Effect of Metallic Bonding on its Hardness, Appl. Phys. Lett., 2008, vol. 92, no. 24, pp. 241901 1–3.CrossRefGoogle Scholar
  71. 71.
    Gou, H., Hou, L., Zhang, J., Li, H., Sun, G., and Gao, F., First-Principles Study of Low Compressibility Osmium Borides, Appl. Phys. Lett., 2006, vol. 88, no. 22, pp. 221904 1–3.CrossRefGoogle Scholar
  72. 72.
    Šimùmek, A., How to Estimate Hardness of Crystals on a Pocket Calculator, Phys. Rev. B, 2007, vol. 75, no. 17, pp. 172108 1–4.Google Scholar
  73. 73.
    Li, Q., Ma, Y.M., Oganov, A.R., Wang, H.B., Wang, H., Xu, Y., Cui, T., Mao, H.K., and Zou, G.T., Superhard Monoclinic Polymorph of Carbon, Phys. Rev. Lett., 2009, vol. 102, no. 17, p. 175506.CrossRefGoogle Scholar
  74. 74.
    Oganov, A.R., Glass, C.W., and Ono, S., High-Pressure Phases of CaCO3: Crystal Structure Prediction and Experiment, Earth Planet. Sci. Lett., 2006, vol. 241, nos. 1–2, pp. 95–103.CrossRefGoogle Scholar
  75. 75.
    Oganov, A.R. and Glass, C.W., Crystal Structure Prediction Using ab initio Evolutionary Techniques: Principles and Applications, The Journal of Chemical Physics, 2006, vol. 124, no. 24, pp. 244704 1–15.CrossRefGoogle Scholar
  76. 76.
    Glass, C.W., Oganov, A.R., and Hansen, N., USPEX-Evolutionary Crystal Structure Prediction, Comput. Phys. Commun., 2006, vol. 175, nos. 11–12, pp. 713–720.CrossRefGoogle Scholar
  77. 77.
    Deem, M.W. and Newsam, J.M., Determination of 4-Connected Framework Crystal Structures by Simulated Annealing, Nature, 1989, vol. 342, no. 6247, pp. 260–262.CrossRefGoogle Scholar
  78. 78.
    Pannetier, J., Bassas-Alsina, J., Rodriguez-Carvajal, J., and Caignaert, V., Prediction of Crystal Structures from Crystal Chemistry Rules by Simulated Annealing, Nature, 1990, vol. 346, no. 6282, pp. 343–345.CrossRefGoogle Scholar
  79. 79.
    Boisen, M.B., Gibbs, G.V., and Bukowinski, M.S.T., Framework Silica Structures Generated Using Simulated Annealing with a Potential Energy Function Based on an H6Si2O7 Molecule, Phys. Chem. Miner., 1994, vol. 21, no. 5, pp. 269–284.CrossRefGoogle Scholar
  80. 80.
    Gödecker, S., Minima Hopping: An Efficient Search Method for the Global Minimum of the Potential Energy Surface of Complex Molecular Systems, The Journal of Chemical Physics, 2004, vol. 120, no. 21, pp. 9911–9917.CrossRefGoogle Scholar
  81. 81.
    Martonák, R., Laio, A., and Parrinello, M., Predicting Crystal Structures: The Parrinello-Rahman Method Revisited, Phys. Rev. Lett., 2003, vol. 90, no. 7, pp. 75503 1–4.CrossRefGoogle Scholar
  82. 82.
    Li, Q., Wang, M., Oganov, A.R., Cui, T., Ma, Y., and Zou, G., Rhombohedral Superhard Structure of BC2N, J. Appl. Phys., 2009, vol. 105, no. 5, pp. 053514 1–4.Google Scholar
  83. 83.
    Ma, Y., Oganov, A.R., and Xie, Y., High-Pressure Structures of Lithium, Potassium, and Rubidium Predicted by an ab initio Evolutionary Algorithm, Phys. Rev. B, 2008, vol. 78, no. 1, pp. 014102 1–5.CrossRefGoogle Scholar
  84. 84.
    Gao, G., Oganov, A.R., Bergara, A., Martinez-Canales, M., Cui, T., Iitaka, T., Ma, Y., and Zou, G., Superconducting High Pressure Phase of Germane, Phys. Rev. Lett., 2008, vol. 101, no. 10, pp. 107002 1–4.CrossRefGoogle Scholar
  85. 85.
    Wang, H., Li, Q., Li, Y.E., Xu, Y., Cui, T., Oganov, A.R., and Ma, Y.M., Ultra-Incompressible Phases of Tungsten Dinitride Predicted from First Principles, Phys. Rev. B, 2009, vol. 79, no. 13, p. 132109.CrossRefGoogle Scholar
  86. 86.
    Xu, Y., Tse, J.S., Oganov, A.R., Cui, T., Wang, H., Ma, Y., and Zou, G., Superconducting High-Pressure Phase of Cesium Iodide, Phys. Rev. B, 2009, vol. 79, no. 14, pp. 144110 1–4.CrossRefGoogle Scholar
  87. 87.
    Wang, H., Li, Q., Wang, Y.C., Gao, G.Y., and Ma, Y.M., High-Pressure Polymorphs of Li2BeH4 Predicted by First-Principles Calculations, J. Physics-Condensed Matter., 2009, vol. 21, no. 38, pp. 385405 1–5.Google Scholar
  88. 88.
    Ma, Y., Oganov, A.R., Li, Z., Xie, Y., and Kotakoski, J., Novel High Pressure Structures of Polymeric Nitrogen, Phys. Rev. Lett., 2009, vol. 102, no. 6, pp. 65501 1–4.CrossRefGoogle Scholar
  89. 89.
    Ma, Y., Eremets, M., Oganov, A.R., Xie, Y., Trojan, I., Medvedev, S., Lyakhov, A.O., Valle, M., and Prakapenka, V., Transparent Dense Sodium, Nature, 2009, vol. 458, no. 7235, pp. 182–185.CrossRefGoogle Scholar
  90. 90.
    Li, Y., Wang, H., Li, Q., Ma, Y., Cui, T., and Zou, G., Twofold Coordinated Ground-State and Eightfold High-Pressure Phases of Heavy Transition Metal Nitrides MN2 (M=Os, Ir, Ru, and Rh), Inorg. Chem., 2009, vol. 48, no. 20, pp. 9904–9909.CrossRefGoogle Scholar
  91. 91.
    Martinez-Canales, M., Oganov, A.R., Ma, Y., Yan, Y., Lyakhov, A.O., and Bergara, A., Novel Structures and Superconductivity of Silane under Pressure, Phys. Rev. Lett., 2009, vol. 102, no. 8, pp. 87005 1–4.CrossRefGoogle Scholar
  92. 92.
    Ma, Y., Wang, Y., and Oganov, A.R., Absence of Superconductivity in the High-Pressure Polymorph of MgB2, Phys. Rev. B, 2009, vol. 79, no. 5, pp. 54101 1–5.CrossRefGoogle Scholar
  93. 93.
    Hu, C.H., Oganov, A.R., Lyakhov, A.O., Zhou, H.Y., and Hafner, J., Insulating States of LiBeH3 under Extreme Compression, Phys. Rev. B, 2009, vol. 79, no. 13, pp. 134116 1–5.CrossRefGoogle Scholar
  94. 94.
    Zhao, Y.X. and Spain, I.L., X-ray Diffraction Data for Graphite to 20 GPa, Phys. Rev. B, 1989, vol. 40, no. 2, pp. 993–997.CrossRefGoogle Scholar
  95. 95.
    Yagi, T., Utsumi, W., Yamakata, M., Kikegawa, T., and Shimomura, O., High-Pressure in situ X-Ray Diffraction Study of the Phase Transformation from Graphite to Hexagonal Diamond at Room Temperature, Phys. Rev. B, 1992, vol. 46, no. 10, pp. 6031–6039.CrossRefGoogle Scholar
  96. 96.
    Mao, W.L., Mao, H.K., Eng, P.J., Trainor, T.P., Newville, M., Kao, C.C., Heinz, D.L., Shu, J.F., Meng, Y., and Hemley, R.J., Bonding Changes in Compressed Superhard Graphite, Science, 2003, vol. 302, no. 5644, pp. 425–427.CrossRefGoogle Scholar
  97. 97.
    Xu, J., Mao, H., and Hemley, R.J., The Gem Anvil Cell: High-Pressure Behavior of Diamond and Related Materials, Journal of Physics, Condensed Matter, 2002, vol. 14, no. 44, pp. 11549–11552.CrossRefGoogle Scholar
  98. 98.
    Patterson, J.R., Catledge, S.A., Vohra, Y.K., Akella, J., and Weir, S.T., Electrical and Mechanical Properties of C70 Fullerene and Graphite under High Pressures Studied Using Designer Diamond Anvils, Phys. Rev. Lett., 2000, vol. 85, no. 25, pp. 5364–5367.CrossRefGoogle Scholar
  99. 99.
    Bundy, F.P. and Kasper, J.S., Hexagonal Diamond-a New Form of Carbon, The Journal of Chemical Physics, 1967, vol. 46, no. 9, pp. 3437–3446.CrossRefGoogle Scholar
  100. 100.
    Chen, C.F. and Sun, H., Comment on “Superhard Pseudocubic BC2N Superlattices”, Phys. Rev. Lett., 2007, vol. 99, no. 15, pp. 159601 1–1.Google Scholar
  101. 101.
    Chen, S., Gong, X.G., and Wei, S.H., Chen, Gong, and Wei Reply, Phys. Rev. Lett., 2007, vol. 99, no. 15, pp. 159602 1–1.Google Scholar
  102. 102.
    Sun, H., Jhi, S.-H., Roundy, D., Cohen, M.L., and Louie, S.G., Structural Forms of Cubic BC2N, Phys. Rev. B, 2001, vol. 64, no. 9, pp. 094108 1–6.CrossRefGoogle Scholar
  103. 103.
    Chen, S.Y., Gong, X.G., and Wei, S.H., Superhard Pseudocubic BC2N Superlattices, Phys. Rev. Lett., 2007, vol. 98, no. 1, pp. 015502 1–4.CrossRefGoogle Scholar
  104. 104.
    Gildenblat, G.S., Grot, S.A., and Badzian, A., The Electrical Properties and Device Applications of Homoepitaxial and Polycrystalline Diamond Films, Proc. IEEE, 1991, vol. 79, no. 5, pp. 647–668.CrossRefGoogle Scholar
  105. 105.
    Jones, L.E. and Thrower, P.A., Influence of Boron on Carbon Fiber Microstructure, Physical Properties, and Oxidation Behavior, Carbon, 1991, vol. 29, no. 2, pp. 251–269.CrossRefGoogle Scholar
  106. 106.
    Liu, Z., He, J., Yang, J., Guo, X., Sun, H., Wang, H.T., Wu, E., and Tian, Y., Prediction of a Sandwich-Like Conducting Superhard Boron Carbide: First-Principles Calculations, Phys. Rev. B, 2006, vol. 73, no. 17, pp. 172101 1–4.Google Scholar
  107. 107.
    Calandra, M. and Mauri, F., High-T-c Superconductivity in Superhard Diamond-Like BC5, Phys. Rev. Lett., 2008, vol. 101, no. 1, pp. 016401 1–4.CrossRefGoogle Scholar
  108. 108.
    Moussa, J.E. and Cohen, M.L., Constraints on T-c for Superconductivity in Heavily Boron-Doped Diamond, Phys. Rev. B, 2008, vol. 77, no. 6, pp. 064518 1–8.CrossRefGoogle Scholar
  109. 109.
    Yang, J., Sun, H., He, J., Tian, Y., and Chen, C., Diamond-Like BC3 as a Superhard Conductor Identified by Ideal Strength Calculations, Journal of Physics, Condensed Matter, 2007, vol. 19, no. 34, pp. 346223 1–7.CrossRefGoogle Scholar
  110. 110.
    Lowther, J.E., Potential Superhard Phases and the Stability of Diamond-Like Boron-Carbon Structures, Journal of Physics, Condensed Matter, 2005, vol. 17, no. 21, pp. 3221–3229.CrossRefGoogle Scholar
  111. 111.
    Yao, Y., Tse, J.S., and Klug, D.D., Crystal and Electronic Structure of Superhard BC5: First-Principles Structural Optimizations, Phys. Rev. B, 2009, vol. 80, no. 9, pp. 094106 1–6.CrossRefGoogle Scholar
  112. 112.
    Li, Q., Wang, H., Tian, Y., Xia, Y., Cui, T., He, J., Ma, Y., and Zou, G., Superhard and Superconducting Structures of BC5, J. Appl. Phys, 2010, in press.Google Scholar
  113. 113.
    Moreno Armenta, M.G., Reyes-Serrato, A., and Avalos Borja, M., Ab initio Determination of the Electronic Structure of Beryllium-, Aluminum-, and Magnesium Nitrides: A Comparative Study, Phys. Rev. B, 2000, vol. 62, no. 8, pp. 4890–4898.CrossRefGoogle Scholar
  114. 114.
    Reyes-Serrato, A., Soto, G., Gamietea, A., and Farias, M.H., Electronic Structure of β-Be3N2, J. Phys. Chem. Solids, 1998, vol. 59, no. 5, pp. 743–746.CrossRefGoogle Scholar
  115. 115.
    Gou, H., Hou, L., Zhang, J., Wang, Z., Gao, L., and Gao, F., Cubic γ-Be3N2: A Superhard Semiconductor Predicted from First Principles, Appl. Phys. Lett., 2007, vol. 90, no. 19, pp. 191905 1–3.CrossRefGoogle Scholar
  116. 116.
    Xia, Y., Li, Q., and Ma, Y., Novel Superhard Polymorphs of Be3N2 Predicted by First-Principles, Computational Materials Science, 2010, in press.Google Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  1. 1.State Key Lab of Superhard MaterialsJilin UniversityChangchunChina

Personalised recommendations