Boron: a hunt for superhard polymorphs

  • A. R. Oganov
  • V. L. Solozhenko
Production, Structure, Properties


Boron is a unique element, being the only element, all known polymorphs of which are superhard, and all of its crystal structures are distinct from any other element. The electron-deficient bonding in boron explains its remarkable sensitivity to even small concentrations of impurity atoms and allows boron to form peculiar chemical compounds with very different elements. These complications made the study of boron a great challenge, creating also a unique and instructive chapter in the history of science. Strange though it may sound, the discovery of boron in 1808 was ambiguous, with pure boron polymorphs established only starting from the 1950s–1970s, and only in 2007 was the stable phase at ambient conditions determined. The history of boron research from its discovery to the latest discoveries pertaining to the phase diagram of this element, the structure and stability of β-boron, and establishment of a new high-pressure polymorph, γ-boron is reviewed.


boron structure polymorphism phase diagram 


  1. 1.
    Oganov, A.R., Chen, J., Gatti, C., Ma, Y.-M., Yu, T., Liu, Z., Glass, C.W., Ma, Y.-Z., Kurakevych, O.O., and Solozhenko, V.L., Ionic High-Pressure Form of Elemental Boron, Nature, 2009, vol. 457, pp. 863–867.CrossRefGoogle Scholar
  2. 2.
    Gay-Lussac, J.L. and Thenard, L.J., Sur la Décomposition et la Recomposition de l’Acide Boracique, Ann. Chim. Phys., 1808, vol. 68, pp. 169–174.Google Scholar
  3. 3.
    Davy, H., Electro-Chemical Researches, on the Decomposition of the Earths; With Observations on the Metals Obtained from the Alkaline Earths, and on the Amalgam Procured from Ammonia (Read June 30, 1808), Phil. Trans. R. Soc. Lond., 1808, vol. 98, pp. 333–370.CrossRefGoogle Scholar
  4. 4.
    Moissan, H., Etude du Bore Amorphe, Ann. Chim. Phys., 1895, vol. 6, pp. 296–320.Google Scholar
  5. 5.
    Weintraub, E., On the Properties and Preparation of the Element Boron, J. Ind. Eng. Chem., 1911, vol. 3, no. 5, pp. 299–301.CrossRefGoogle Scholar
  6. 6.
    Sainte-Claire Deville, H. and Wöhler, F., Ueber das Bor, Ann. Physik, 1857, vol. 176, no. 4, pp. 635–646.Google Scholar
  7. 7.
    Wöhler, F. and Sainte-Claire Deville, H., Du Bore, Ann. Chim. Phys., 1858, vol. 52, no. 3, pp. 63–92.Google Scholar
  8. 8.
    Douglas, B.E. and Ho, S.-M., Structure and Chemistry of Crystalline Solids, New York: Springer, 2006.Google Scholar
  9. 9.
    Richards, S.M. and Kasper, J.S., The Crystal Structure of YB66, Acta Cryst., 1969, vol. B25, pp. 237–251.Google Scholar
  10. 10.
    Amberger, E. and Ploog, K., Bildung der Gitter des Reinen Bors, J. Less-Common Metals, 1971, vol. 23, pp. 21–31.CrossRefGoogle Scholar
  11. 11.
    Will, G. and Ploog, K., Crystal Structure of I-Tetragonal Boron, Nature, 1974, vol. 251, pp. 406–408.CrossRefGoogle Scholar
  12. 12.
    Laubengayer, A.W., Hurd, D.T., Newkirk, A.E., and Hoard, J.L., Boron. I. Preparation and Properties of Pure Crystalline Boron, J. Am. Chem. Soc., 1943, vol. 65, pp. 1924–1931.CrossRefGoogle Scholar
  13. 13.
    Hoard, J.L., Geller, S., and Hughes, R.E., On the Structure of Elementary Boron, J. Am. Chem. Soc., 1951, vol. 73, pp. 1892–1893.CrossRefGoogle Scholar
  14. 14.
    Hoard, J.L., Hughes, R.E., and Sands, D.E., The Structure of Tetragonal Boron, J. Am. Chem. Soc., 1958, vol. 80, 4507–4515.CrossRefGoogle Scholar
  15. 15.
    Pauling, L., The Nature of the Chemical Bond, Ithaca, New York: Cornell University Press, 1960.Google Scholar
  16. 16.
    Ploog, K. and Amberger, E., Kohlenstoff-Induzierte Gitter beim Bor: I-Tetragonales (B12)4B2C und (B12)4B2C2, J. Less-Comm. Metals, 1971, vol. 23, pp. 33–42.CrossRefGoogle Scholar
  17. 17.
    Sands, D.E. and Hoard, J.L., Rhombohedral Elemental Boron, J. Am. Chem. Soc., 1957, vol. 79, pp. 5582–5583.CrossRefGoogle Scholar
  18. 18.
    Hughes, R.E., Kennard, C.H.L., Sullenger, D.B., Weakliem, H.A., Sands, D.E., and Hoard, J.L., The Structure of β-Rhombohedral Boron, J. Am. Chem. Soc., 1963, vol. 85, 361–362.CrossRefGoogle Scholar
  19. 19.
    McCarty, L.V., Kasper, J.S., Horn, F.H., Decker, B.F., and Newkirk, A.F., A New Crystalline Modification of Boron, J. Am. Chem. Soc., 1958, vol. 80, p. 2592.CrossRefGoogle Scholar
  20. 20.
    Talley, C.P., A New Polymorph of Boron, Acta Cryst., 1960, vol. 13, pp. 271–272.CrossRefGoogle Scholar
  21. 21.
    Vlasse, M., Naslain, R., Kasper, J.S., and Ploog, K., Crystal Structure of Tetragonal Boron Related to α-AlB12, J. Sol. State Chem., 1979, vol. 28, 289–301.CrossRefGoogle Scholar
  22. 22.
    Chase M.W., Jr., NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data Monographs & Suppl., 1998, Monograph no. 9, American Chemical Society, American Institute of Physics, National Institute of Standards and Technology.Google Scholar
  23. 23.
    Wentorf, R.H., Jr., Boron: Another Form, Science, 1965, vol. 147, pp. 49–50.CrossRefGoogle Scholar
  24. 24.
    Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J., Superconductivity at 39 K in Magnesium Diboride, Nature, 2001, vol. 410, pp. 63–64.CrossRefGoogle Scholar
  25. 25.
    Ma, Y., Wang, Y., and Oganov, A.R., Absence of Superconductivity in the Novel High-Pressure Polymorph of MgB2, Phys. Rev. B, 2009, vol. 79, p. 054101.CrossRefGoogle Scholar
  26. 26.
    Eremets, M.I., Struzhkin, V.W., Mao, H.K., and Hemley, R.J., Superconductivity in Boron, Science, 2001, vol. 293, pp. 272–274.CrossRefGoogle Scholar
  27. 27.
    Sanz, D.N., Loubeyre, P., Mezouar, M., Equation of State and Pressure-Induced Amorphization of Beta-Boron from X-Ray Measurements up to 100 GPa, Phys. Rev. Lett., 2001, vol. 89, pp. 245501.CrossRefGoogle Scholar
  28. 28.
    Ma, Y.Z., Prewitt, C.T., Zou, G.T., Mao, H.K., and Hemley, R.J., High-Pressure High-Temperature X-ray Diffraction of beta-Boron to 30 GPa, Phys. Rev. B, 2003, vol. 67, p. 174116.CrossRefGoogle Scholar
  29. 29.
    Van Setten, M.J., Uijttewaal, M.A., de Wijs, G.A., and de Groot, R.A., Thermodynamic Stability of Boron: The Role of Defects and Zero Point Motion, J. Am. Chem. Soc, 2007, vol. 129, pp. 2458–2465.CrossRefGoogle Scholar
  30. 30.
    Widom, M. and Mikhalkovic, M., Symmetry-Broken Crystal Structure of Elemental Boron at Low Temperature, Phys. Rev. B, 2008, vol. 77, pp. 064113.CrossRefGoogle Scholar
  31. 31.
    Ogitsu, T., Gygi, F., Reed, J., Motome, Y., Schwegler, E., and Galli, G., Imperfect Crystal and Unusual Semiconductor: Boron, a Frustrated Element, J. Am. Chem. Soc., 2009, vol. 131, pp. 1903–1909.CrossRefGoogle Scholar
  32. 32.
    Oganov, A.R. and Glass C.W., Crystal Structure Prediction Using ab initio Evolutionary Techniques: Principles and Applications, J. Chem. Phys., 2006, vol. 124, p. 244704.CrossRefGoogle Scholar
  33. 33.
    Solozhenko, V.L., Kurakevych, O.O., and Oganov, A.R., On the Hardness of a New Boron Phase, Orthorhombic γ-B28, J. Superhard Mater., 2008, vol. 30, pp. 428–429.CrossRefGoogle Scholar
  34. 34.
    Gabunia, D., Tsagareishvili, O., Darsavelidze, G., Lezhava, D., Antadze, M., and Gabunia, L., Preparation, Structure and Some Properties of Boron Crystals with Different Content of 10B and 11B Isotopes, J. Solid State Chem., 2004, vol. 177, pp. 600–604.CrossRefGoogle Scholar
  35. 35.
    Amberger, E. and Stumpf, W., in Gmelin Handbook of Inorganic Chemistry. Elemental Boron, Boron Carbides, 8th ed., Suppl. vol. 2, SN 13, Ex. 19, Berlin: Springer-Verlag, 1981, pp. 1–112.Google Scholar
  36. 36.
    Zarechnaya, E.Y., Dubrovinsky, L., Dubrovinskaia, N., Filinchuk, Y., Chernyshov, D., Dmitriev, V., Miyajima, N., El Goresy, A., Braun, H.F., Vansmaalen, S., Kantor, I., Kantor, A., Prakapenka, V., Hanfland, M., Mikhailushkin, A.S., Abrikosov, I.A., and Simak, S.I., Superhard Semiconducting Optically Transparent High Pressure Phase of Boron, Phys. Rev. Lett., 2009, vol. 102, p. 185501.CrossRefGoogle Scholar
  37. 37.
    Zarechnaya, E.Y., Dubrovinsky, L., Dubrovinskaia, N., Miyajima, N., Filinchuk, Y., Chernyshov, D., and Dmitriev, V., Synthesis of an Orthorhombic High Pressure Boron Phase, Sci. Tech. Adv. Mat., 2008, vol. 9, p. 044209.CrossRefGoogle Scholar
  38. 38.
    Oganov, A.R., Solozhenko, V.L., Kurakevych, O.O., Gatti, C., Ma, Y., Chen, J., Liu, Z., and Hemley, R.J., Comment on “Superhard Semiconducting Optically Transparent High Pressure Phase of Boron”, 2009,
  39. 39.
    Le Godec, Y., Kurakevych, O.O., Munsch, P., Garbarino, G., and Solozhenko, V.L., Equation of State of Orthorhombic Boron, γ-B28., Solid State Comm., 2009, vol. 149, 1356–1358.CrossRefGoogle Scholar
  40. 40.
    Rulis, P., Wang, L., and Ching, W.Y., Prediction of γ-B28 ELNES with Comparison to α-B12., Phys. Stat. Sol. (RRL), 2009, vol. 3, pp. 133–135.CrossRefGoogle Scholar
  41. 41.
    Jiang, C., Lin, Z., Zhang, J., and Zhao, Y., First-Principles Prediction of Mechanical Properties of gamma-Boron, Appl. Phys. Lett., 2009, vol. 94, p. 191906.CrossRefGoogle Scholar
  42. 42.
    Segall, D.E. and Arias, T.A., Ab initio Approach for High-Pressure Systems with Application to High-Pressure Phases of Boron: Perturbative Momentum-Space Potentials, Phys. Rev. B, 2003, vol. 67, p. 064105.CrossRefGoogle Scholar
  43. 43.
    Haussermann, U., Simak, S.I., Ahuja, R., and Johansson, B., Metal-Nonmetal Transition in the Boron Group Elements, Phys. Rev. Lett., 2003, vol. 90, p. 065701.CrossRefGoogle Scholar
  44. 44.
    Ma, Y.M., Tse, J.S., Klug, D.D., and Ahuja, R., Electron-Phonon Coupling of α-Ga Boron, Phys. Rev. B, 2004, vol. 70, p. 214107.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2009

Authors and Affiliations

  • A. R. Oganov
    • 1
    • 2
  • V. L. Solozhenko
    • 3
  1. 1.Department of Geosciences, Department of Physics and Astronomy, and New York Center for Computational SciencesStony Brook UniversityStony BrookUSA
  2. 2.Geology DepartmentMoscow State UniversityMoscowRussia
  3. 3.LPMTM-CNRSUniversité Paris NordVilletaneuseFrance

Personalised recommendations