Journal of Water Chemistry and Technology

, Volume 40, Issue 6, pp 334–342 | Cite as

Eco-Friendly Acetaminophen Sequestration Using Waste Cotton Seeds: Equilibrium, Optimization and Validation Studies

  • N. SivarajasekarEmail author
  • K. Balasubramani
  • R. Baskar
  • S. Sivamani
  • I. Ganesh Moorthy
Physical Chemistry of Water Treatment Processes


Adsorbent was prepared from waste cotton seeds and utilized to remove acetaminophen from aqueous solutions. The main and interactive effects of five process variables such as, adsorbent dose, initial acetaminophen concentration, contact time, pH and temperature were investigated via response surface methodology based on Box-Behnken statistical design. The optimum values of the selected variables were estimated using Derringer’s desired function. The batch adsorption data obeyed smith isotherm. Kinetic investigation showed that the acetaminophen was chemisorbed on waste cotton seed activated biomass surface following pseudo second order model. The fixed-bed adsorption breakthrough curves at different bed heights were well correlated by BDST model. Exhausted adsorbent could be regenerated eight times efficiently using microwave irradiation.


adsorption acetaminophen Box-Behnken cotton seed derringer’s desirability regeneration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamson, A.W. and Gas, A.P., Physical Chemistry of Surfaces, [16 ed.], New York: Wiley-Interscience, 1997.Google Scholar
  2. 2.
    Al-Ahmad, A., Daschner, R.D., and Kummerer, K., Arch. Environ. Contam. Toxicol., 1999, vol. 37, pp.158–163.CrossRefGoogle Scholar
  3. 3.
    Gabrita, I., Ruiz, B., Mestre, A.S., et al., Chem. Eng. J., 2010, vol. 163, pp. 249–255.CrossRefGoogle Scholar
  4. 4.
    Cunha, C.O., Silva, R.C.R., Amorim, C.G., et al., Electroanalysis, 2010, vol. 22, pp. 2967–2972.CrossRefGoogle Scholar
  5. 5.
    Daughton, C.G. and Ternes, T.A., Environ. Health. Perspect., 1999, vol. 107, pp. 979–938.CrossRefGoogle Scholar
  6. 6.
    Murray, K.E., Thomas, S.M., and Bodour, A.A., Environ. Pollut., 2010, vol. 158, pp. 3462–3471.CrossRefGoogle Scholar
  7. 7.
    Ana, S.M., Ricardo, A.P., Ivo, A., et al., Chem. Eng. J., 2014, vol. 253, pp. 408–417CrossRefGoogle Scholar
  8. 8.
    Sivarajasekar, N., Srileka, S., Samson Arun Prasath, S., and Rabinson, S., Carbon. Lett., 2008, vol. 9, no. 3, pp. 181–187. Scholar
  9. 9.
    Sivarajasekar, N. and Basar, R., J. Chem. and Pharm. Res., 2015, vol. 7, no. 9, pp. 737–748.Google Scholar
  10. 10.
    Sivarajasekar, N. Balakrishnan, V., and Baskar, B., Univ. J. Chem. Technol. Metal., 2009, vol. 44, pp. 157–164.Google Scholar
  11. 11.
    Karthik, V., Saravanan, K., Sivarajasekar, N., and Suriyanarayanan, N., Ecol. Environ. and Conser., 2016, vol. 22, pp. 423–434Google Scholar
  12. 12.
    Karthik, V., Saravanan, K., Sivarajasekar, N., and Suriyanarayanan, N., Ecol. Environ. and Conser., 2016b, vol. 22, pp. 435–440.Google Scholar
  13. 13.
    Sivarajasekar, N., Mohanraj, N., Sivamani, S., and Ganesh Moorthy, I., J. Environ. and Biochnol. Res., 2017, vol. 6, no. 1, pp. 88–95.Google Scholar
  14. 14.
    Sivarajasekar, N., Paramasivan, T., Muthusaravanan, S. et al., J. Environ. and Biochnol. Res., 2017, vol. 6, no. 1, pp. 186–198.Google Scholar
  15. 15.
    Sivarajasekar, N., Carbon Lett., 2007, vol. 8, no. 3, pp.199–206, Scholar
  16. 16.
    Sivarajasekar, N. and Baskar, R., Desalin. Water Treat., 2013, vol. 52, no. 40/42, pp. 743–7765, Scholar
  17. 17.
    Sivarajasekar, N. and Baskar, R., Chin. J. Chem. Eng., 2015, vol. 23, pp. 1610–1619.CrossRefGoogle Scholar
  18. 18.
    Sivarajasekar, N. and Baskar, R., J. Ind. Eng. Chem., 2014, vol. 20, pp. 2699–2709.CrossRefGoogle Scholar
  19. 19.
    Sivarajasekar, N., Baskar, R., Ragu, T., et al., Appl. Water Sci.,
  20. 20.
    Lanmuir, I., J. Amer.Chem.Soc., 1918, vol. 40, pp. 1361–1403.CrossRefGoogle Scholar
  21. 21.
    Smith, S.E., J. Amer.Chem.Soc., 1947, vol. 69, pp. 645–651.Google Scholar
  22. 22.
    Ho, Y.S., Ng, J.C.Y., and McKay, G., Sep. Purif. Method, 2000, vol. 29, pp. 189–232.CrossRefGoogle Scholar
  23. 23.
    Ho, Y.S., Water Res., 2006, vol. 40, pp. 119–125.CrossRefGoogle Scholar
  24. 24.
    Sivarajasekar, N. and Baskar, R., Arab. J. Chem,
  25. 25.
    Liu Xing-gao and Ji-xin Qian, Chem. Eng.Technol., 2000, vol. 23, pp. 235–241.CrossRefGoogle Scholar
  26. 26.
    Mohajeri, L., Aziz, H.A., Isa, M.H., and Zahed, M.A., Biores. Technol., 2010, vol. 101, pp. 893–900.CrossRefGoogle Scholar
  27. 27.
    Murugesan, K., Dhamija, A., Nam, I.H., et al., Dyes Pigments, 2007, vol. 75, pp. 176–184.CrossRefGoogle Scholar
  28. 28.
    Sivarajasekar, N., Balasubramani, K., Mohanraj, N., et al., J. Mol. Liq., 2017, Scholar
  29. 29.
    Prakash Moran J. Priya, B., Naif Abdullah Al-Dhabi, et al, Ultrason. SonoChemm., 2017, vol. 35, pp. 204–209.CrossRefGoogle Scholar
  30. 30.
    Sivarajasekar, N., Ramasubbu, S., Prakash Moran, J., and Priya, B., Cationic Dyes Sequesration from Aqueous Phase Using Bio-Surfactant Based Reverse Micelles, Book chapter, Recent Advances in Chemical Engineering, 2016, pp. 67–74, Scholar
  31. 31.
    Sivarajasekar, N., Mohanraji, N., Basar, R., et al., Arab. J. Sci. Eng.,

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • N. Sivarajasekar
    • 1
    Email author
  • K. Balasubramani
    • 2
  • R. Baskar
    • 2
  • S. Sivamani
    • 3
  • I. Ganesh Moorthy
    • 4
  1. 1.Laboratory for Bioremediation, Unit Operations Lab, Department of BiotechnologyKumaraguru College of TechnologyCoimbatoreIndia
  2. 2.Department of Chemical EngineeringKongu Engineering CollegePerunduraiIndia
  3. 3.Chemical and Petrochemical Engineering SectionSalalah College of TechnologySalalahOman
  4. 4.Department of BiotechnologyKamaraj College of Engineering and TechnologyVirudhunagarIndia

Personalised recommendations