Journal of Water Chemistry and Technology

, Volume 38, Issue 6, pp 353–357 | Cite as

The influence of natural organic matter on trihalomethanes formation during the conditioning of drinking water

  • N. A. Klymenko
  • E. A. Samsoni-Todorova
  • L. A. Savchina
Natural Water
  • 26 Downloads

Abstract

The behavior pattern of the content of disinfection by-products in samples from the clean water reservoir of the Dnieper water supply plant as a function of the total organic carbon concentration, ultraviolet absorption at λ = 254 nm, and the specific ultraviolet absorption has been investigated. It was established that with due regard for specific peculiarities of the Dnieper water composition in different year seasons, the total organic carbon concentration was the most expedient for a potential-determining indicator of trihalomethanes formation.

Keywords

Dnieper water coagulation total organic carbon ozonization trihalomethanes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richardson, S.D., Plewa, M.J., Wagner, E.D., Schoeny, R., and DeMarina, D.M., Mutat. Res., 2007, vol. 636, pp. 178–242.CrossRefGoogle Scholar
  2. 2.
    Abouleish, M.J. and Wells, M., Sci. Total Environ., 2015, vol. 521/522, pp. 293–304.CrossRefGoogle Scholar
  3. 3.
    Matilainen, A., Gjessing, E.T., Lahtinen, T., Hed, L., Bhatnagar, A., and Sillanpaa, M., Chemosphere, 2011, vol. 83, pp. 1431–1442.CrossRefGoogle Scholar
  4. 4.
    Guanghui, H., Reckhow, D.A., and Abusallout, I., Ibid., 2015, vol. 130, pp. 82–89.Google Scholar
  5. 5.
    Weishaar, J.I., Aiken, G.R., Bergamaschi, B.A., Farm, M.S., Fuji, R., and Mopper, K., Environ. Sci. and Technol., 2003, vol. 37, no. 20, pp. 4702–4708.CrossRefGoogle Scholar
  6. 6.
    Chow, A.T., Dahlgren, R.A., Zhang, Q., and Wong, P.K., J. Water Supply Res. Technol. Aqua, 2008, vol. 57, no. 7, pp. 471–480.CrossRefGoogle Scholar
  7. 7.
    Wong, H., Mok, K.M., and Fan, X.I., Desalination, 2007, vol. 210, pp. 44–51.CrossRefGoogle Scholar
  8. 8.
    Kitis, M., Karanfil, T., Wigton, A., and Kiduff, J.E., Water Res., 2002, vol. 36, no. 15, pp. 3834–3848.CrossRefGoogle Scholar
  9. 9.
    Platikanov, S., Tauler, R., Rodrigues, P.M., Pereira, D., and Esteves da Silva, I.C., Environ. Sci. Pollut. Res., 2010, vol. 17, no. 8, pp. 1389–1400.CrossRefGoogle Scholar
  10. 10.
    Rodrigues, P.M., Esteves da Silva, I.C., and Antunes, M.C., Anal. Chim. Acta, 2007, vol. 595, no. 1/2, pp. 266–274.CrossRefGoogle Scholar
  11. 11.
    Klymenko, N.A., Samsoni-Todorova, E.A., Savchina, L.A., Lavrenchuk, I.N., and Zasyad’ko, T.N., J. Water Chem. and Technol., 2012, vol. 34, no. 3, pp. 154–161.CrossRefGoogle Scholar
  12. 12.
    Linnik, P.N., Vasil’chuk, T.A., and Bolelaya, N.V., Gidrobiol. Zhurn., 1995, vol. 31, no. 2, pp. 74–81.Google Scholar
  13. 13.
    Klymenko, N.A., Samsoni-Todorova, E.A., Savchina, L.A., Chekhovskaya, T.P., Lavrenchuk, I.N., and Zasyad’-ko, T.N., J. Water Chem. and Technol., 2012, vol. 34, no. 2, pp. 117–123.CrossRefGoogle Scholar
  14. 14.
    Pilipenko, A.T., Milyukin, M.V., and Tulyupa, F.M., Khimiya i Tekhnologiya Vody, 1991, vol. 13, no. 9, pp. 805–843.Google Scholar
  15. 15.
    Klymenko, N.A., Samsoni-Todorova, E.A., and Savchina, L.A., J. Water Chem. and Technol., 2014, vol. 36, no. 5, pp. 230–236.CrossRefGoogle Scholar
  16. 16.
    Goncharuk, V.V., Klymenko, N.A., Vakulenko, V.F., et al., Khimiya i Tekhnologiya Vody, 1999, vol. 21, no. 2, pp. 173–184.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • N. A. Klymenko
    • 1
  • E. A. Samsoni-Todorova
    • 1
  • L. A. Savchina
    • 1
  1. 1.Dumanskii Institute of Colloid and Water ChemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations