Honda Formal Module in an Unramified p-Extension of a Local Field as a Galois Module
- 3 Downloads
Abstract
For a fixed rational prime number p, consider a chain of finite extensions of fields K0/ℚp, K/K0, L/K, and M/L, where K/K0 is an unramified extension and M/L is Galois extension with Galois group G. Suppose that a one-dimensional Honda formal group F over the ring \(\mathcal{O}_K\) relative to the extension K/K0 and a uniformizing element π ∈ K0 is given. This paper studies the structure of \(F(\mathfrak{m}_M)\) as an \(\mathcal{O}_{K_0}\)[G]-module for an unramified p-extension M/L provided that \(W_F\cap{F({\frak{m}}_L)}=W_F\cap{F({\frak{m}}_M)}=W_F^s\) for some s ≥ 1, where W F s is the πs-torsion and WF = ∪n=1∞WFn is the complete π-torsion of a fixed algebraic closure Kalg of the field K.
Keywords
local field unramified extension formal group Galois modulePreview
Unable to display preview. Download preview PDF.
References
- 1.Algebraic Number Theory, Ed. by J. Cassels and A. Frohlich (Academic, London, 1967; Mir, Moscow, 1969).Google Scholar
- 2.J. Neukirch Class Field Theory (Springer-Verlag, Berlin, 1986).CrossRefzbMATHGoogle Scholar
- 3.K. Iwasawa Local Class Field Theory (Oxford Univ. Press, Oxford, 1986).zbMATHGoogle Scholar
- 4.J. H. Silverman The Arithmetic of Elliptic Curves (Springer-Verlag,……New York, 1986), in Ser.: Graduate Texts in Mathematics, Vol. 106.CrossRefGoogle Scholar
- 5.K. Iwasawa “On Galois groups of local fields,” Trans. Am. Soc. 80, 448–469 (1955).MathSciNetCrossRefzbMATHGoogle Scholar
- 6.K. Iwasawa “On local cyclotomic fields,” J. Math. Soc. Jpn. 12, 16–21 (1960).MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Z. I. Borevich “The multiplicative Agroup of cyclic p-extension of a local field,” Proc. Steklov Inst. Math. 80, 15–30 (1965).zbMATHGoogle Scholar
- 8.S. V. Vostokov and I. I. Nekrasov “Lubin–Tate formal module in a cyclic unramified p-extension as Galois module,” J. Math. Sci. (N. Y.) 219, 375–379 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
- 9.T. Honda “On the theory of commutative formal groups,” J. Math. Soc. Jpn. 22, 213–246 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
- 10.O. V. Demchenko “Formal Honda groups: The arithmetic of the group of points,” St. Petersburg Math. J. 12 101–115 (2001).MathSciNetGoogle Scholar