Word equations in simple groups and polynomial equations in simple algebras

  • A. Kanel-Belov
  • B. Kunyavskii
  • E. Plotkin


We give a brief survey of recent results on word maps on simple groups and polynomial maps on simple associative and Lie algebras. Our focus is on parallelism between these theories, allowing one to state many new open problems and giving new ways for solving older ones.


Simple Group Algebraic Group Division Algebra Chevalley Group Finite Simple Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Amitsur, “On Rings with Identities,” J. London Math. Soc. 20, 464–470 (1955).MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. A. Amitsur, “The T-Ideals of the Free Ring,” J. London Math. Soc. 20, 470–475 (1955).MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. A. Amitsur and L. H. Rowen, “Elements of Reduced Trace 0,” Israel J. Math. 87, 161–179 (1994).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    A. Auel, E. Brussel, S. Garibaldi, and U. Vishne, “Open Problems on Central Simple Algebras,” Transform. Groups 16, 219–264 (2011).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    T. Bandman, S. Garion, and F. Grunewald, “On the Surjectivity of Engel Words on PSL(2, q),” Groups Geom. Dyn. 6, 409–439 (2012).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    T. Bandman, S. Garion, and B. Kunyavskii, Equations in Simple Matrix Groups: Algebra, Geometry, Arithmetic, Dynamics, preprint (2012).Google Scholar
  7. 7.
    T. Bandman, N. Gordeev, B. Kunyavskii, and E. Plotkin, “Equations in Simple Lie Algebras,” J. Algebra 355, 67–79 (2012).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    J. Barge and E. Ghys, “Cocycles d’Euler et de Maslov,” Math. Ann. 294, 235–265 (1992).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    A. Basmajan and B. Maskit, “Space Form Isometries As Commutators and Products of Involutions,” Trans. Amer. Math. Soc. 364, 5015–5033 (2012).MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Ya. Belov, “No Associative PI-Algebra Coincides with Its Commutant,” Sibirsk. Mat. Zh. 44, 1239–1254 (2003) [Siberian Math. J. 44, 969–980 (2003)].MATHGoogle Scholar
  11. 11.
    A. Borel, “On Free Subgroups of Semisimple Groups,” Enseign. Math. 29, 151–164 (1983); Euvres-Collected Papers (Springer-Verlag, Berlin-Heidelberg, 2001), Vol. IV, pp. 41–54.MathSciNetMATHGoogle Scholar
  12. 12.
    G. Brown, “On Commutators in a Simple Lie Algebra,” Proc. Amer. Math. Soc. 14, 763–767 (1963).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    P.-E. Caprace and K. Fujiwara, “Rank-One Isometries of Buildings and Quasi-Morphisms of Kac-Moody Groups,” Geom. Funct. Anal. 19, 1296–1319 (2010).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    M. Casals-Ruiz and I. Kazachkov, “On Systems of Equations over Free Partially Commutative Groups,” Mem. Amer. Math. Soc. 212(999) (2011).Google Scholar
  15. 15.
    P. Chatterjee, “On the Surjectivity of the Power Maps of Algebraic Groups in Characteristic Zero,” Math. Res. Lett. 9, 741–756 (2002).MathSciNetMATHGoogle Scholar
  16. 16.
    P. Chatterjee, “On the Surjectivity of the Power Maps of Semisimple Algebraic Groups,” Math. Res. Lett. 10, 625–633 (2003).MathSciNetMATHGoogle Scholar
  17. 17.
    P. Chatterjee, “On the Power Maps, Orders and Exponentiality of p-Adic Algebraic Groups,” J. Reine Angew. Math. 629, 201–220 (2009).MathSciNetMATHGoogle Scholar
  18. 18.
    P. Chatterjee, “Surjectivity of Power Maps of Real Algebraic Groups,” Adv. Math. 226, 4639–4666 (2011).MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    C.-L. Chuang, “On Ranges of Polynomials in Finite Matrix Rings,” Proc. Amer. Math. Soc. 110, 293–302 (1990).MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    P. Deligne and D. Sullivan, “Division Algebras and the Hausdorff-Banach-Tarski Paradox,” Enseign. Math. 29, 145–150 (1983).MathSciNetMATHGoogle Scholar
  21. 21.
    R. K. Dennis and L. N. Vaserstein, “Commutators in Linear Groups,” K-Theory 2, 761–767 (1989).MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    S. Donkin, “Invariants of Several Matrices,” Invent. Math. 110, 389–401 (1992).MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    M. Droste and I. Rivin, “On Extension of Coverings,” Bull. Lond. Math. Soc. 42, 1044–1054 (2010).MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    M. Droste and J. K. Truss, “On Representing Words in the Automorphism Group of the Random Graph,” J. Group Theory 9, 815–836 (2006).MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    A. Elkasapy and A. Thom, About Goto’s Method Showing Surjectivity of Word Maps, arXiv:1207.5596.Google Scholar
  26. 26.
    E. W. Ellers and N. Gordeev, “On the Conjectures of J. Thompson and O. Ore,” Trans. Amer. Math. Soc. 350, 3657–3671 (1998).MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    E. Formanek, “Central Polynomials for Matrix Rings,” J. Algebra 23, 129–132 (1972).MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    E. Formanek, “The Ring of Generic Matrices,” J. Algebra 258, 310–320 (2002).MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    J.-M. Gambaudo and E. Ghys, “Commutators and Diffeomorphisms of Surfaces,” Ergodic Theory Dynam. Systems 24, 1591–1617 (2004).MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    N. Gordeev, “Sums of Orbits of Algebraic Groups, I,” J. Algebra 295, 62–80 (2006).MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    S. R. Gordon, “Associators in Simple Algebras,” Pacific J. Math. 51, 131–141 (1974).MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    R. Gow, “Commutators in Finite Simple Groups of Lie Type,” Bull. London Math. Soc. 32, 311–315 (2000).MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    A. B. Gray, Jr., “Infinite Symmetric Groups and Monomial Groups,” Ph.D. Thesis, New Mexico State Univ., 1960.Google Scholar
  34. 34.
    C. K. Gupta and W. Holubowski, “Commutator Subgroup of Vershik-Kerov Group,” Linear Algebra Appl. 436, 4279–4284 (2012).MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    R. M. Guralnick and W. M. Kantor, “The Probability of Generating a Simple Group,” J. Algebra 234, 743–792 (2000).MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    R. Guralnick and G. Malle, “Products of Conjugacy Classes and Fixed Point Spaces,” J. Amer. Math. Soc. 25, 77–121 (2012).MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    P. de la Harpe and G. Skandalis, “Sur la simplicité essentielle du groupe des inversibles et du groupe unitaire dans une C*-algebre simple,” J. Funct. Anal. 62, 354–378 (1985).MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, “The Yoga of Commutators,” Zap. Nauch. Sem. POMI 387, 53–82 (2011) [J. Math. Sci. (New York) 179, 662–678 (2011)].MathSciNetGoogle Scholar
  39. 39.
    R. Hazrat, A. Stepanov, N. Vavilov, and Z. Zhang, Commutator Width in Chevalley Groups, arXiv:1206.2128.Google Scholar
  40. 40.
    I. M. Isaacs, “Commutators and the Commutator Subgroup,” Amer. Math. Monthly 84, 720–722 (1977).MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    S. Jambor, M. W. Liebeck, and E. A. O’Brien, Some Word Maps That are Non-Surjective on Infinitely Many Finite Simple Groups, arXiv:1205.1952.Google Scholar
  42. 42.
    A. Kanel-Belov, S. Malev, and L. Rowen, “The Images of Non-Commutative Polynomials Evaluated on 2 × 2 Matrices,” Proc. Amer. Math. Soc. 140, 465–478 (2012).MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    M. Kassabov and N. Nikolov, Words with Few Values Infinite Simple Groups, arXiv:1112.5484.Google Scholar
  44. 44.
    S. A. Katre and A. S. Garge, “Matrices Over Commutative Rings as Sums of k-th Powers,” Proc. Amer. Math. Soc. (in press).Google Scholar
  45. 45.
    E. Klimenko, Engel Maps for PSL2(ℂ), preprint.Google Scholar
  46. 46.
    B. Kunyavskii, “The Bogomolov Multiplier of Finite Simple Groups,” in Cohomological and Geometric Approaches to Rationality Problems, Progr. Math., Ed. by F. Bogomolov and Yu. Tschinkel (Birkhäuser, Boston, MA, 2010), Vol. 282, pp. 209–217.CrossRefGoogle Scholar
  47. 47.
    M. Larsen, “Word Maps have Large Image,” Israel J. Math. 139, 149–156 (2004).MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    M. Larsen, A. Shalev, and P. H. Tiep, Waring Problem for Finite Simple Groups, Ann. Math. 174, 1885–1950 (2011).MathSciNetMATHGoogle Scholar
  49. 49.
    M. Larsen, A. Shalev, and P. H. Tiep, Waring Problem for Finite Quasisimple Groups, arXiv:1107.3341.Google Scholar
  50. 50.
    L. Le Bruyn, “Centers of Generic Division Algebras, the Rationality Problem 1965–1990,” Israel J. Math. 76, 97–111 (1991).MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    M. Levy, Word Maps with Small Image in Simple Groups, arXiv:1206.1206.Google Scholar
  52. 52.
    M. W. Liebeck, E. A. O’Brien, A. Shalev, and P. H. Tiep, “The Ore Conjecture,” J. Europ. Math. Soc. 12, 939–1008 (2010).MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    M. W. Liebeck, E. A. O’Brien, A. Shalev, and P. H. Tiep, “Commutators Infinite Quasisimple Groups,” Bull. London Math. Soc. 43, 1079–1092 (2011).MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    M. W. Liebeck and A. Shalev, “Diameters of Finite Simple Groups: Sharp Bounds and Applications,” Ann. Math. 154, 383–406 (2001).MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    R. C. Lyndon, “Words and Infinite Permutations,” in Mots. Langue, Raisonnement, Calcul (Hermes, Paris, 1990), pp. 143–152.Google Scholar
  56. 56.
    L. Makar-Limanov, “Algebraically Closed Skew Fields,” J. Algebra 93, 117–135 (1985).MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    J. A. Maroli, “Representation of Tree Permutations by Words,” Proc. Amer. Math. Soc. 110, 859–869 (1990).MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    C. Martinez and E. Zelmanov, “Products of Powers Infinite Simple Groups,” Israel J. Math. 96, 469–479 (1996).MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Ju. I. Merzljakov, “Algebraic Linear Groups As Full Groups of Automorphisms and the Closure of Their Verbal Subgroups,” Algebra i Logika Sem. 6(1), 83–94 (1967).MathSciNetGoogle Scholar
  60. 60.
    Z. Mesyan, “Commutator Rings,” Bull. Austral. Math. Soc. 74, 279–288 (2006).MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    J. Morita and E. Plotkin, “Gauss Decompositions of Kac-Moody Groups,” Comm. Algebra 27, 465–475 (1999).MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    A. Muranov, “Finitely Generated Infinite Simple Groups of Infinite Commutator Width,” Int. J. Algebra Computation 17, 607–659 (2007).MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    A. Muranov, “Finitely Generated Infinite Simple Groups of Infinite Square Width and Vanishing Stable Commutator Length,” J. Topol. Anal. 2, 341–384 (2010).MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    J. Mycielski, “Can One Solve Equations in Groups?,” Amer. Math. Monthly 84, 723–726 (1977).MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    N. Nikolov, Algebraic Properties of Profinite Groups, arXiv:1108.5130.Google Scholar
  66. 66.
    N. Nikolov and D. Segal, “Powers Infinite Groups,” Groups Geom. Dyn. 5, 501–507 (2011).MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    O. Ore, “Some Remarks on Commutators,” Proc. Amer. Math. Soc. 2, 307–314 (1951).MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    C. Procesi, “The Invariant Theory of n × n Matrices,” Adv. Math. 19, 306–381 (1976).MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    S. Pumplün, “Sums of Squares in Octonion Algebras,” Proc. Amer. Math. Soc. 133, 3143–3152 (2005).MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    S. Pumplün, “Sums of d-th Powers in Non-Commutative Rings,” Beitrage Algebra Geom. 48, 291–301 (2007).MathSciNetMATHGoogle Scholar
  71. 71.
    Yu. Razmyslov, “On a Problem of Kaplansky,” Izv. Akad. Nauk SSSR. Ser. Mat. 73, 483–501 (1973)[Math. USSR Izv. 7, 479–496 (1973)].MathSciNetGoogle Scholar
  72. 72.
    R. Ree, “Commutators in Semi-Simple Algebraic Groups,” Proc. Amer. Math. Soc. 15, 457–460 (1964).MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    M. Rosset, “Elements of Trace Zero and Commutators,” Ph.D. Thesis, Bar-Ilan Univ., 1997.Google Scholar
  74. 74.
    M. Rosset and S. Rosset, “Elements of Trace Zero in Central Simple Algebras,” in Rings, Extensions, and Cohomology, Ed. by A. R. Magid (Evanston, IL, 1993); Lecture Notes Pure Appl. Math. (Marcel Dekker, New York, 1994), vol. 159, pp. 205–211.Google Scholar
  75. 75.
    M. Rosset and S. Rosset, “Elements of Trace Zero That are not Commutators,” Comm. Algebra 28, 3059–3072 (2000).MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    L. H. Rowen, Polynomial Identities in Ring Theory (Academic Press, New York, 1980).MATHGoogle Scholar
  77. 77.
    J. Saxl and J. S. Wilson, “A Note on Powers in Simple Groups,” Math. Proc. Cambridge Phil. Soc. 122, 91–94 (1997).MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    D. Segal, “Words: Notes on Verbal Width in Groups,” in London Math. Soc. Lecture Notes Ser. (Cambridge Univ. Press, Cambridge, 2009), vol. 361.Google Scholar
  79. 79.
    A. Shalev, “Commutators, Words, Conjugacy Classes and Character Methods,” Turkish J. Math. 31, 131–148 (2007).MathSciNetMATHGoogle Scholar
  80. 80.
    A. Shalev, Applications of Some Zeta Functions in Group Theory, in Zeta Functions in Algebra and Geometry, Ed. by A. Campillo et al., Contemp. Math. (Amer. Math. Soc., Providence, RI, 2012), Vol. 566, pp. 331–344.CrossRefGoogle Scholar
  81. 81.
    A. Stein, “1 1/2-Generation of Finite Simple Groups,” Beitráge Algebra Geom. 39, 349–358 (1998).MATHGoogle Scholar
  82. 82.
    R. Steinberg, “On Power Maps in Algebraic Groups,” Math. Res. Lett. 10, 621–624 (2003).MathSciNetMATHGoogle Scholar
  83. 83.
    A. Stepanov, Universal Localization in Algebraic Groups, preprint (2010), Scholar
  84. 84.
    L. N. Vaserstein, “On the Sum of Powers of Matrices,” Linear Multilin. Algebra 21, 261–270 (1987).MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    L. N. Vaserstein and E. Wheland, “Commutators and Companion Matrices over Rings of Stable Rank 1,” Linear Algebra Appl. 142, 263–277 (1990).MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    S.-K. Ye, S. Chen, and C.-S. Wang, “Gauss Decomposition with Prescribed Semisimple Part in Quadratic Groups,” Comm. Algebra 37, 3054–3063.Google Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  1. 1.Department of MathematicsBar-Ilan UniversityRamat GanIsrael

Personalised recommendations