Advertisement

Plasma Grid Cathodes Based on a Constricted Arc Discharge for Generating a Pulsed Intense Low-Energy Electron Beam in a Plasma-Filled Diode with a Longitudinal Magnetic Field

  • V. N. DevyatkovEmail author
  • N. N. Koval
Article

Abstract

Designs are presented for plasma grid cathodes based on an arc contracted discharge. They are designed to work under conditions of an inhomogeneous magnetic field as high as 35 mT and penetrate into their gas-discharge system from the region of electron beam transport. Parameters are presented of the electronic source used to modify the surfaces of materials and products using a pulsed electron beam in order to alter their operating properties.

Notes

REFERENCES

  1. 1.
    Koval, N.N., Ivanov, Y.F., Teresov, A.D., Denisova, Yu.A., and Petrikova, E.A., Russ. Phys. J., 2014, vol. 56, no. 10, p. 1150.CrossRefGoogle Scholar
  2. 2.
    Ozur, G.E., Proskurovsky, D.I., and Karlik, K.V., Instrum. Exp. Tech., 2005, vol. 48, no. 6, p. 753.CrossRefGoogle Scholar
  3. 3.
    Engelko, V., Yatsenko, B., Mueller, G., and Bluhm, H., Vacuum, 2001, vol. 62, p. 211.ADSCrossRefGoogle Scholar
  4. 4.
    Koval, N.N., Devyatkov, V.N., Grigor’ev, S.V., and Sochugov, N.S., Trudy II mezhdunarodnogo Kreindelevskogo seminara “Plazmennaya emissionnaya elektronika” (Proc. II Int. Kreindel Seminar “Plasma Emission Electronics”), Ulan-Ude, 2006, p. 79.Google Scholar
  5. 5.
    Devyatkov, V.N. and Koval, N.N., Trudy V mezhdunarodnogo Kreindelevskogo seminara “Plazmennaya emissionnaya elektronika” (Proc. V Int. Kreindel Seminar “Plasma Emission Electronics”), Ulan-Ude, 2015, p. 122.Google Scholar
  6. 6.
    Koval, N.N., Sochugov, N.S., Devyatkov, V.N., et al., Proc. 8th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, 2006, p. 51.Google Scholar
  7. 7.
    Grigoriev, S.V., Devjatkov, V.N., Koval, N.N., and Teresov, A.D., Proc. 9th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows, Tomsk, 2008, p. 19.Google Scholar
  8. 8.
    Grigor'ev, S.V., Devyatkov, V.N., Mikov, A.V., et al., Izv. Vyssh. Uchebn. Zaved., Fiz., 2014, vol. 57, no. 11/3, p. 58.Google Scholar
  9. 9.
    Devyatkov, V.N., Ivanov, Y.F., Krysina, O.V., et al., Vacuum, 2017, vol. 143, p. 464.ADSCrossRefGoogle Scholar
  10. 10.
    Devyatkov, V.N., Vorobyov, M.S., Koval, N.N., and Shugurov, V.V., J. Phys.: Conf. Ser., 2015, vol. 652.Google Scholar
  11. 11.
    Devyatkov, V.N. and Koval, N.N, Russ. Phys. J., 2018, vol. 60, no. 9, p. 1509.CrossRefGoogle Scholar
  12. 12.
    Devyatkov, V.N. and Koval, N.N., Izv. Vyssh. Uchebn. Zaved., Fiz., 2016, no. 9/2, p. 49.Google Scholar
  13. 13.
    Devyatkov, V.N. and Koval, N.N., Izv. Vyssh. Uchebn. Zaved., Fiz., 2017, no. 10/2, p. 32.Google Scholar
  14. 14.
    Devyatkov, V.N. and Koval’, N.N., Sbornik materialov i dokladov 2-oi Mezhdunarodnoi konferentsii “Elektronno-luchevaya svarka i smezhnye tekhnologii” (Proc. 2nd Int. Conf. “Electron-Beam Welding and Related Technologies”), Moscow, 2017, p. 161.Google Scholar
  15. 15.
    Gavrilov, N.V. and Kamenetskikh, A.S., Tech. Phys., 2013, vol. 58, no. 10, p. 1426.CrossRefGoogle Scholar
  16. 16.
    Devyatkov, V.N. and Koval, N.N., J. Phys.: Conf. Ser., 2014, vol. 552, p. 012014.Google Scholar
  17. 17.
    Koval, N.N., Grigoryev, S.V., Devyatkov, V.N., et al., IEEE Trans. Plasma Sci., 2009, vol. 37, no. 10, p. 1890.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Institute of High-Current Electronics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations