Phase Composition, Structure, and Wear Resistance of Electric-Explosive CuO–Ag System Coatings after Electron Beam Processing

  • D. A. RomanovEmail author
  • S. V. Moskovskii
  • A. M. Glezer
  • V. E. Gromov
  • K. V. Sosnin


Electroerosion-resistant CuO–Ag system coatings are obtained via electric explosive spraying and subsequent electron beam processing for the first time. The coatings are a structurally homogeneous composite material consisting of a silver matrix with copper oxide inclusions. The CuO–Ag system coatings have a wear resistance more than 300% greater than that of copper. The basis of the structural formation of the CuO–Ag system electric-explosive coating is the dynamic rotation of sprayed particles that form a hierarchically organized vortex structure in both the coating and in the upper layers of the substrate, including their interface.



This work was supported by the Russian Science Foundation, project no. 18-79-00013; and by the RF Ministry of Education and Science as part of State Task no. 2017/113.


  1. 1.
    Kondoh, K., Powder Metallurgy, Rijeka: InTech, 2012.CrossRefGoogle Scholar
  2. 2.
    Gerard, F., Advances in Condensed Matter and Materials Research, New York: Nova Science, 2005.Google Scholar
  3. 3.
    Taiasov, K.A., Isupov, V.P., and Bokhonov, B.B., et al., J. Mater. Synth. Process., 2000, vol. 8, no. 1, p. 21.CrossRefGoogle Scholar
  4. 4.
    Russell, A.M. and Lee, K.L., Structure-Property Relations in Nonferrous Metals, Hoboken: Wiley, 2005.CrossRefGoogle Scholar
  5. 5.
    Talijan, N.M., Zast. Mater., 2011, vol. 52, no. 3, p. 173.Google Scholar
  6. 6.
    Qureshi, A.H., Azhar, S.M., and Hussain, N., J. Therm. Anal. Calorim., 2010, vol. 99, p. 203.CrossRefGoogle Scholar
  7. 7.
    Bukhanovsky, V., Rudnytsky, M., Grechanyuk, M., et al., Mater. Technol., 2016, vol. 50, no. 4, p. 523.Google Scholar
  8. 8.
    Nijssen, R.P.L., Composite Materials: An Introduction, Inholland Univ. Appl. Sci., 2015.Google Scholar
  9. 9.
    Romanov, D.A., Gromov, V.E., Glezer, A.M., et al., Mater. Lett., 2017, vol. 188, p. 25.CrossRefGoogle Scholar
  10. 10.
    Romanov, D.A., Moskovskii, S.V., Martusevich, E.A., et al., Metalurgija, 2018, vol. 57, no. 4, p. 299.Google Scholar
  11. 11.
    Romanov, D.A., Budovskikh, E.A., Gromov, V.E., et al., Fizicheskie osnovy elektrovzryvnogo napyleniya iznoso- i elektroerozionnostoikikh pokrytii (Physical Foundations of Electroexplosive Deposition of Wear- and Electroerosion-Resistant Coatings), Novokuznetsk: Sib. Gos. Ind. Univ., 2018.Google Scholar
  12. 12.
    Meshcheryakov, Yu.I. and Atroshenko, S.A., Russ. Phys. J., 1992, vol. 35, no. 4, p. 385.CrossRefGoogle Scholar
  13. 13.
    Meshcheryakov, Yu.I., Divakov, A.K., Zhigacheva, N.I., and Myshlyaev, M.M., J. Appl. Mech. Tech. Phys., 2007, vol. 48, no. 6, p. 887.ADSCrossRefGoogle Scholar
  14. 14.
    Panin, V.E. and Egorushkin, V.E., Phys. Mesomech., 2013, vol. 16, no. 4, p. 267.CrossRefGoogle Scholar
  15. 15.
    Panin, V.E., Panin, A.V., Elsukova, T.F., and Popkova, Yu.F., Phys. Mesomech., 2015, vol. 18, no. 6, p. 89.CrossRefGoogle Scholar
  16. 16.
    Panin, V.E., Egorushkin, V.E., Panin, A.V., and Chernyavskii, A.G., Phys. Mesomech., 2016, vol. 19, no. 3, p. 255.CrossRefGoogle Scholar
  17. 17.
    Matthews, F.L. and Rawlings, R.D., Composite Materials: Engineering and Science, Woodhead, 1999.Google Scholar
  18. 18.
    Babichev, A.P., Babushkina, N.A., Bratkovskii, A.M., et al., Fizicheskie velichiny (Physical Quantities), Moscow: Energoatomizdat, 1991.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • D. A. Romanov
    • 1
    Email author
  • S. V. Moskovskii
    • 1
  • A. M. Glezer
    • 2
    • 3
  • V. E. Gromov
    • 1
  • K. V. Sosnin
    • 1
  1. 1.Siberian State Industrial UniversityNovokuznetskRussia
  2. 2.National Research Technological University (MISiS)MoscowRussia
  3. 3.Bardin Central Research Institute for Ferrous MetallurgyMoscowRussia

Personalised recommendations