Advertisement

Effect of Silicon Content on the Microstructure and Mechanical Properties of Niobium–Silicon Alloy

  • M. I. Karpov
  • V. I. Vnukov
  • T. S. StroganovaEmail author
  • D. V. Prokhorov
  • I. S. Zheltyakova
  • B. A. Gnesin
  • V. M. Kiiko
  • I. L. Svetlov
Article
  • 7 Downloads

Abstract

The microstructure and high-temperature mechanical properties of samples of (1 − х)(Nb–9Mo–13Ti–4Hf–4Zr–4Al–4Сr)–хSi alloy, where x = 5, 10, 15, and 20 at % of Si are studied. An alloy with 15 at % Si displays the highest strength characteristics (tensile strength and coefficient of stress concentration during bending at room temperature, bending strength at 1300°C). Alloy samples with 15 at % Si also display the highest 100-hour strength when tested in creep mode at temperatures of 1200 and 1300°C. Mechanisms of deformation are proposed for the investigated alloys.

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 16-02-00384.

REFERENCES

  1. 1.
    Balsone, S.J., Bewlay, B.P., Jackson, M.R., et al., Proc. 3rd Int. Symp. on Structural Intermetallics, Snow King Resort, Jackson Hole, 2001, p. 99.Google Scholar
  2. 2.
    Karpov, M.I., Vnukov, V.I., Korzhov, V.P., Stroganova, T.S., Zheltyakova, I.S., Prokhorov, D.V., Gnesin, I.B., Kiiko, V.M., Kolobov, Yu.R., Golosov, E.V., and Nekrasov, A.N., Russ. Metall., 2014, vol. 2014, no. 4, p. 267.ADSCrossRefGoogle Scholar
  3. 3.
    Kablov, E.N., Karpov, M.I., Svetlov, I.L., et al., RF Patent 2557117, 2015.Google Scholar
  4. 4.
    Bewlay, B.P. and Jackson, M.R., US Patent 5833773, 1995.Google Scholar
  5. 5.
    Zhang, S. and Guo, X., Mater. Rev., 2012, vol. 26, p. 95.Google Scholar
  6. 6.
    Wang, L., Jia, L., Cui, R., et al., Chin. J. Aeronaut., 2012, vol. 25, no. 2, p. 292.CrossRefGoogle Scholar
  7. 7.
    Mao, W. and Guo, X., Prog. Nat. Sci.: Mater. Int., 2012, vol. 22, no. 2, p. 139.CrossRefGoogle Scholar
  8. 8.
    Su, L., Jia, L., Feng, Y., et al., Mater. Sci. Eng. A, 2013, vol. 560, p. 672.CrossRefGoogle Scholar
  9. 9.
    Yan, Y., Ding, H., Kang, Y., and Song, J., Mater. Des., 2014, vol. 55, p. 450.CrossRefGoogle Scholar
  10. 10.
    Haisheng, G., Xiping, G., and Honglei, Z., Rare Met. Mater. Eng., 2014, vol. 43, no. 4, p. 1019.Google Scholar
  11. 11.
    Stroganova, T.S., Karpov, M.I., Korzhov, V.P., Vnukov, V.I., Prohorov, D.V., Zheltyakova, I.S., Gnesin, I.B., and Svetlov, I.L., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 9, p. 1151.CrossRefGoogle Scholar
  12. 12.
    Guo, F., Kang, Y., and Xiao, C., J. Mater. Eng., 2016, vol. 44, no. 10, p. 8.Google Scholar
  13. 13.
    Svetlov, I.L., Kuzmina, N.A., Neiman, A.V., Ishadzhanova, I.V., Karpov, M.I., Stroganova, T.S., Korzhov, V.P., and Vnukov, V.I., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 9, p. 1146.CrossRefGoogle Scholar
  14. 14.
    Bewlay, B.P., Jackson, M.R., Subramanian, P.R., and Zhao, J.C., Metall. Mater. Trans. A, 2003, vol. 34, no. 10, p. 2043.CrossRefGoogle Scholar
  15. 15.
    Kim, W.Y., Tanaka, H., and Hanada, S., Mater. Trans., 2002, vol. 43, no. 6, p. 1415.CrossRefGoogle Scholar
  16. 16.
    Tanaka, R., Kasama, A., Fujikura, M., et al., Proc. Int. Gas Turbine Congress, Tokyo, 2003, p. 2.Google Scholar
  17. 17.
    Fujikura, M., Kasama, A., Tanaka, R., and Hanada, S., Mater. Trans., 2004, vol. 45, no. 2, p. 493.CrossRefGoogle Scholar
  18. 18.
    Li, Y., Ma, C., Zhang, H., and Miura, S., Mater. Sci. Eng. A, 2011, vol. 528, no. 18, p. 5772.CrossRefGoogle Scholar
  19. 19.
    Miura, S., Murasato, Y., Sekito, Y., et al., Mater. Sci. Eng. A, 2009, vol. 510, p. 317.CrossRefGoogle Scholar
  20. 20.
    Subramanian, P.R., Parthasarathy, T.A., Mendiratta, M.G., and Dimiduk, D.M., Scr. Metall. Mater., 1995, vol. 32, no. 8, p. 1227.CrossRefGoogle Scholar
  21. 21.
    Gang, F. and Heilmaier, M., JOM, 2014, vol. 66, no. 9, p. 1908.CrossRefGoogle Scholar
  22. 22.
    Tang, Y. and Guo, X., Scr. Mater., 2016, vol. 116, p. 16.CrossRefGoogle Scholar
  23. 23.
    Broek, D., Elementary Engineering Fracture Mechanics, Springer, 1982.CrossRefGoogle Scholar
  24. 24.
    Knittel, S., Mathieu, S., and Vilasi, M., Intermetallics, 2014, vol. 47, p. 36.CrossRefGoogle Scholar
  25. 25.
    Soboyejo, W.O. and Srivatsan, T.S., Advanced Structural Materials: Properties, Design Optimization, and Applications, Boca Raton: CRC Press, 2006.CrossRefGoogle Scholar
  26. 26.
    Courtney, T.H., Mechanical Behavior of Materials, Long Grove: Waveland, 2005.Google Scholar
  27. 27.
    Kuzmina, N.A., Marchenko. E.I., Eremin, N.N., et al., Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Fundamental’nye i prikladnye issledovaniya v oblasti sozdaniya liteinykh zharoprochnykh nikelevykh i intermetallidnykh splavov i vysokoeffektivnykh tekhnologii izgotovleniya detalei GTD” (Proc. All-Russian Sci. Conf. “Fundamental and Applied Research into the Production of Casting Heat-Resistant Nickel and Intermetallide Alloys and High-Efficiency Methods for Fabrication of Gas-Turbine Engine Parts”), Moscow, 2017, p. 188.Google Scholar
  28. 28.
    Kim, J.H., Tabaru, T., Hirai, H., et al., Scr. Mater., 2003, vol. 48, no. 10, p. 1439.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • M. I. Karpov
    • 1
    • 3
  • V. I. Vnukov
    • 1
  • T. S. Stroganova
    • 1
    Email author
  • D. V. Prokhorov
    • 1
  • I. S. Zheltyakova
    • 1
  • B. A. Gnesin
    • 1
  • V. M. Kiiko
    • 1
  • I. L. Svetlov
    • 2
  1. 1.Institute of Solid State Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.National Scientific Research Institute of Aviation MaterialsMoscowRussia
  3. 3.Tolyatti State UniversityTolyattiRussia

Personalised recommendations