Describing the Kinetics of Abnormal Grain Growth in Nanocrystalline and Submicrocrystalline Nickel, Based on First-Order Phase Transition Representations

  • A. N. AleshinEmail author


The growth of grains in nano- and submicrocrystalline nickel produced via equal channel angular pressing is investigated under conditions of non-isothermal annealing using differential scanning calorimetry and transmission electron microscopy. Both types of the material exhibit abnormal grain growth that can be described in terms of the Johnson–Mehl–Avrami formalism.



  1. 1.
    Klement, U., Erb, U., and Aust, K.T., Nanostruct. Mater., 1995, vol. 6, p. 581.CrossRefGoogle Scholar
  2. 2.
    Neishi, K., Horita, Z., and Langdon, T.G., Mater. Sci. Eng. A, 2002, vol. 325, p. 54.CrossRefGoogle Scholar
  3. 3.
    Chuvil’deev, V.N., Kopylov, V.I., Nokhrin, A.V., Makarov, I.M., Malashenko, L.M., and Kukareko, V.A., Phys. Met. Metallogr., 2003, vol. 96, no. 5, p. 486.Google Scholar
  4. 4.
    Greer, A.L., Acta Metall., 1982, vol. 30, p. 171.CrossRefGoogle Scholar
  5. 5.
    Avrami, M., J. Chem. Phys., 1939, vol. 7, p. 1103.ADSCrossRefGoogle Scholar
  6. 6.
    Avrami, M., J. Chem. Phys., 1940, vol. 8, p. 212.ADSCrossRefGoogle Scholar
  7. 7.
    Christian, J.W., The Theory of Transformations in Metals and Alloys. Part I. Equilibrium and General Kinetic Theory, Pergamon, 1975.Google Scholar
  8. 8.
    Henderson, D.W., J. Non-Cryst. Solids, 1979, vol. 30, p. 301.ADSCrossRefGoogle Scholar
  9. 9.
    Burke, J., The Kinetics of Phase Transformations in Metals, Oxford: Pergamon, 1965, p. 46.Google Scholar
  10. 10.
    Johnson, W.A. and Mehl, R.F., Trans. AIME, 1939, vol. 135, p. 416.Google Scholar
  11. 11.
    Augis, J.A. and Bennet, J.E., J. Therm. Anal., 1978, vol. 13, p. 283.CrossRefGoogle Scholar
  12. 12.
    Kissinger, H.E., Anal. Chem., 1957, vol. 29, no. 11, p. 17002.CrossRefGoogle Scholar
  13. 13.
    Erb, U., Nanostruct. Mater., 1995, vol. 6, p. 533.CrossRefGoogle Scholar
  14. 14.
    Iwahashi, Y., Wang, J., Horita, Z., et al., Scr. Mater., 1996, vol. 35, p. 143.CrossRefGoogle Scholar
  15. 15.
    McNelley, T.R., Swisher, D.L., Horita, Z., and Langdon, T.G., in Ultrafine Grained Materials II, Zhu, Y.T., Langdon, T.G., Mishra, R.S., Setniatin, S.L., Saran, M.J., and Lowe, T.C., Eds., Seattle: Minerals, Metals & Materials Society, 2002, p. 15.Google Scholar
  16. 16.
    Mishin, O.V., Jensen, D.J., and Hansen, N., Mater. Sci. Eng. A, 2003, vol. 343, p. 320.CrossRefGoogle Scholar
  17. 17.
    Aleshin, A.N., Phys. Solid State, 2016, vol. 58, no. 2, p. 413.ADSCrossRefGoogle Scholar
  18. 18.
    Gorelik, S.S., Dobatkin, S.V., and Kaputkina, L.M., Rekristallizatsiya metallov i splavov (Recrystallization of Metals and Alloys), Moscow: MISIS, 2005, p. 99.Google Scholar
  19. 19.
    Wollenberger, H.J., in Physical Metallurgy, Cahn, R.W. and Haasen, P., Eds., North-Holland, 1996, vol. 2, p. 1621.Google Scholar
  20. 20.
    Novikov, I.I. and Rogel’berg, I.L., Fiz. Met. Metalloved., 1958, vol. 6, no. 6, p. 1132.Google Scholar
  21. 21.
    Bokstein, B.S., Diffuziya v metallakh (Diffusion in Metals), Moscow: Metallurgiya, 1978, p. 92.Google Scholar
  22. 22.
    Bokstein, B.S., Kopetskii, Ch.V., and Shvindlerman, L.S., Termodinamika i kinetika granits zeren v metallakh (Thermodynamics and Kinetics of Grain Boundaries in Metals), Moscow: Metallurgiya, 1986, p. 28.Google Scholar
  23. 23.
    Estrin, Y., Gottstein, G., and Shvindlerman, L.S., Acta Mater., 1999, vol. 47, no. 13, p. 3541.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Mokerov Institute of Microwave Semiconductor Electronics, Russian Academy of SciencesMoscowRussia

Personalised recommendations