Advertisement

Studying the Parameters of Second Harmonic Generation under the Conditions of a Weakly Chirped Pulse

  • S. V. AlekseevEmail author
  • M. V. Ivanov
  • N. G. Ivanov
  • V. F. Losev
Article
  • 14 Downloads

Abstract

Results are presented from studying the parameters of second harmonic radiation under conditions of the transformation of a positively and negatively chirped pulse of fundamental frequency. It is shown that when the duration of a bandwidth-limited pulse (50 fs) is increased to 630 fs and beyond, the distribution of second harmonic intensity becomes close to Gaussian. The efficiency of second harmonic generation with duration of 2.5 ps falls from 38.69 to 4%, and the quality of the second harmonic improves until it becomes equal to М2 = 1.3. Substantial modulation of the amplitude and the narrowing of the second harmonic spectrum are observed upon negative chirping of the fundamental frequency.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project nos. 18-08-00407, 18р08-00383, and 16-08-00204.

REFERENCES

  1. 1.
    Begishev, I.A., Kalashnikov, M., Karpov, V., et al., J. Opt. Soc. Am. B, 2004, vol. 21, no. 2, p. 318.ADSCrossRefGoogle Scholar
  2. 2.
    Toth, R., Kieffer, J.C., Fourmaux, S., and Ozaki, T., Rev. Sci. Instrum., 2005, vol. 76, p. 083701.ADSCrossRefGoogle Scholar
  3. 3.
    Curtis, A., Calvi, C., Tinsley, J., et al., Nat. Commun., 2018, vol. 9, p. 1077.ADSCrossRefGoogle Scholar
  4. 4.
    Wang, Y., et al., Opt. Lett., 2017, vol. 42, no. 19, p. 3828.ADSCrossRefGoogle Scholar
  5. 5.
    Losev, V., Alekseev, S., Ivanov, N., et al., Proc. SPIE, 2010, vol. 7751, p. 775 109.CrossRefGoogle Scholar
  6. 6.
    Losev, V., Alekseev, S., Ivanov, N., et al., Proc. SPIE, 2011, vol. 7993, p. 421.Google Scholar
  7. 7.
    Alexeev, S.V., Ivanov, N.G., Kovalchuk, B.M., et al., Atmos. Oceanic Opt., 2012, vol. 25, p. 221.Google Scholar
  8. 8.
    Losev, V.F., Alekseev, S.V., Aristov, A.I., et al., Proc. SPIE, 2012, vol. 8677, p. P. 86770Y.Google Scholar
  9. 9.
    Alekseev, S.V., Aristov, A.I., Ivanov, N.G., et al., Laser Part. Beams, 2013, vol. 31, no. 01, p. 17.ADSCrossRefGoogle Scholar
  10. 10.
    Alekseev, S.V., Aristov, A.I., Ivanov, N.G., et al., Quantum Electron., 2012, vol. 42, no. 5, p. 377.ADSCrossRefGoogle Scholar
  11. 11.
    Alekseev, S.V., Aristov, A.I., Grudtsyn, Ya.V., et al., Quantum Electron., 2013, vol. 43, no. 3, p. 190.ADSCrossRefGoogle Scholar
  12. 12.
    Losev, V., Proc. SPIE, 2017, vol. 10254, p. 1025412.CrossRefGoogle Scholar
  13. 13.
    Losev, V.F., Alekseev, S.V., Ivanov, M.V., et al., Proc. SPIE, 2017, vol. 10 254, p. 1025415.Google Scholar
  14. 14.
    Losev, V., Ivanov, N., and Mikheev, L., Proc. SPIE, 2017, vol. 10173, p. 101731D.Google Scholar
  15. 15.
    Alekseev, S.V., Ivanov, N.G., Ivanov, M.V., et al., Quantum Electron., 2017, vol. 47, no. 3, p. 184.ADSCrossRefGoogle Scholar
  16. 16.
    Ivanov, N.G., Ivanov, M.V., Losev, V.F., and Yast-remski, A.G., Russ. Phys. J., 2017, vol. 59, no. 7, p. 984.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • S. V. Alekseev
    • 1
    Email author
  • M. V. Ivanov
    • 1
  • N. G. Ivanov
    • 1
  • V. F. Losev
    • 1
  1. 1.Institute of High Current Electronics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations