Advertisement

Protein Folding as an Autowave Process of Self-Organization in Active Media

  • A. E. Sidorova
  • E. V. Malyshko
  • A. R. Kotov
  • N. T. Levashova
  • M. N. Ustinin
  • V. A. TverdislovEmail author
Article
  • 2 Downloads

Abstract

Protein folding is considered as an autowave self-organization process in active media, where the homochirality of primary structures creates a distributed store of energy. A quantitative model description is presented for the already established folding pattern of stratified structure formation with a variable chirality sign in the hierarchies of L-amino acids, D-α-helices, and L-super-helices.

Notes

ACKNOWLEDGMENTS

This work was supported by a grant from the Russian Science Foundation, project no. 14-50-00029; and by the Russian Foundation for Basic Research, project no. 18-01-00424.

REFERENCES

  1. 1.
    Tverdislov, V.A., Malyshko, E.V., Il’chenko, S.A., Zhulyabina, O.A., and Yakovenko, L.V., Biophysics, 2017, vol. 62, no. 3, p. 331.CrossRefGoogle Scholar
  2. 2.
    Tverdislov, V.A., Malyshko, E.V., and Ilchenko, S.A., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 12, p. 1516.CrossRefGoogle Scholar
  3. 3.
    Tverdislov, V.A., Sidorova, A.E., and Yakovenko, L.V., Biophysics, 2012, vol. 57, no. 1, p. 120.CrossRefGoogle Scholar
  4. 4.
    Gol’danskii, V.I. and Kuz’min, V.V., Sov. Phys. Usp., 1989, vol. 32, p. 1.ADSCrossRefGoogle Scholar
  5. 5.
    Flugel, R.M., Chirality and Life: A Short Introduction to the Early Phases of Chemical Evolution, Springer, 2011.CrossRefGoogle Scholar
  6. 6.
    Tverdislov, V.A., Biophysics, 2013, vol. 58, no. 1, p. 128.CrossRefGoogle Scholar
  7. 7.
    Levinthal, C., in Mössbauer Spectroscopy in Biological Systems, Debrunner, P., Tsibris, J.C.M., and Münck, E., Eds., Univ. of Illinois, 1969, p. 22.Google Scholar
  8. 8.
    Shaitan, K.V., Lozhnikov, M.A., and Kobelkov, G.M., Biophysics, 2016, vol. 61, no. 4, p. 531.CrossRefGoogle Scholar
  9. 9.
    Lewin, B., et al., Cells, London: Jones and Bartlett, 2007.Google Scholar
  10. 10.
    Guye, P.A., C. R. Hebd. Seances Acad. Sci., 1890, vol. 110, p. 714.Google Scholar
  11. 11.
    Ruch, E. and Schonhofer, A., Theor. Chim. Acta, 1970, vol. 19, no. 3, p. 225.CrossRefGoogle Scholar
  12. 12.
    Mezey, P.G., J. Mol. Struct.: THEOCHEM, 1998, vol. 455, p. 183.CrossRefGoogle Scholar
  13. 13.
    Zabrodsky, H., Peleg, S., and Avnir, D., J. Am. Chem. Soc., 1992, vol. 114, no. 20, p. 7843.CrossRefGoogle Scholar
  14. 14.
    Petitjean, M., Entropy, 2003, vol. 5, no. 3, p. 271.ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Luzanov, A.V., Ivanov, V.V., and Minyaev, R.M., J. Struct. Chem., 1998, vol. 39, no. 2, p. 261.CrossRefGoogle Scholar
  16. 16.
    Ramachandran, G.N., Ramakrishnan, C., and Sasisekharan, V., J. Mol. Biol., 1963, vol. 7, no. 1, p. 95.CrossRefGoogle Scholar
  17. 17.
    Ovchinnikov, Yu.A., Bioorganicheskaya khimiya (Bioorganic Chemistry), Moscow: Prosveshchenie, 1987.Google Scholar
  18. 18.
    http://www.wwpdb.org/documentation/file-format.Google Scholar
  19. 19.
    Dill, K.A. and MacCallum, J.L., Science, 2012, vol. 338, p. 1042.ADSCrossRefGoogle Scholar
  20. 20.
    Finkel’shtein, A.V., Usp. Biol. Khim., 2018, vol. 58, p. 7.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. E. Sidorova
    • 1
  • E. V. Malyshko
    • 1
  • A. R. Kotov
    • 1
  • N. T. Levashova
    • 1
  • M. N. Ustinin
    • 2
  • V. A. Tverdislov
    • 1
    Email author
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of SciencesPushchinoRussia

Personalised recommendations