Physical Mechanisms and Properties of Tornadoes

  • M. E. MazurovEmail author


Many well-known types of tornado (e.g., atmospheric (air), electric, fire, dust, liquid (water), and snow) are classified according to their substrates and shapes. Known tornado theories are also given. In this work, a model of a tornado is proposed in which it is a structure that arises in the active medium of a thundercloud, where concave spiral autowaves that transfer energy excite vortices that travel into the environment. An exact analytical solution is given to the vortex regimes of the Navier—Stokes equation for a tornado model. The results from computer modeling of rotational concave spiral autowaves that excite a tornado vortex are given. The satisfactory nature of the proposed model with regard to the set of basic properties of a tornado and the variety of its characteristic properties is shown.



  1. 1.
    Nalivkin, D.V., Uragany, buri, smerchi (Hurricanes, Storms, and Spouts), Moscow: Nauka, 1969.Google Scholar
  2. 2.
    Nalivkin, D.V., Smerchi (Spouts), Moscow: Nauka, 1984.Google Scholar
  3. 3.
    Merkulov, V.I., Gidrodinamika znakomaya i neznakomaya (Known and Unknown in Fluid Dynamics), Moscow: Nauka, 1989.Google Scholar
  4. 4.
    Davies-Jones, R.P., in Intense Atmospheric Vortices, Bengtsson, L. and Lighthill, J., Eds., New York: Springer, 1982, p. 175.Google Scholar
  5. 5.
    Alekseenko, S.V., Kuibin, P.A., and Okulov, V.L., Vvedenie v teoriyu kontsentrirovannykh vikhrei (Introduction to the Theory of Concentrated Vortices), Novosibirsk: Inst. Teplofiz. Sib. Otd. Ross. Akad. Nauk, 2003.Google Scholar
  6. 6.
    Varaksin, A.Yu., Romash, M.E., and Kopeitsev, V.N., Tornado, Moscow: Fizmatlit, 2011.Google Scholar
  7. 7.
    Muchnik, V.M., Fizika grozy (The Physics of Lightning Storms), Leningrad: Gidrometeoizdat, 1974.Google Scholar
  8. 8.
    Mamedov, E.S. and Pavlov, N.I., Taifuny (Typhoons), Leningrad: Gidrometeoizdat, 1974.Google Scholar
  9. 9.
    Khain, A.P. and Sutyrin, G.G., Tropicheskie tsiklony i ikh vzaimodeistvie s okeanom (Tropical Cyclones and Their Interaction with the Ocean), Leningrad: Gidrometeoizdat, 1983.Google Scholar
  10. 10.
    Schmitter, E.D., Nat. Hazards Earth Syst. Sci., 2010, vol. 10, p. 295.ADSCrossRefGoogle Scholar
  11. 11.
    Merkulov, V.I., Elektrogravidinamicheskaya model' NLO, tornado i tropicheskogo uragana (Electrogravidynamic Model of an UFO, a Tornado, and a Tropical Hurricane), Novosibirsk: Inst. Mat., 1998.Google Scholar
  12. 12.
    Dyatlov, V.L., Polyarizatsionnaya model' neodnorodnogo fizicheskogo vakuuma (Polarization Model of Inhomogeneous Physical Vacuum), Novosibirsk: Inst. Mat., 1998.Google Scholar
  13. 13.
    Khmel’nik, S.I., Scholar
  14. 14.
    Mareev, E.A., Phys.-Usp., 2010, vol. 53, p. 504.ADSCrossRefGoogle Scholar
  15. 15.
    Mareev, E.A. and Anisimov, S.V., Atmos. Res., 2009, vol. 91, p. 161.CrossRefGoogle Scholar
  16. 16.
    Mareev, E.A., et al., Geophys. Res. Lett., 2008, vol. 35, p. L15810.ADSCrossRefGoogle Scholar
  17. 17.
    Mareev, E.A., in Nelineinye volny (Nonlinear Waves), Gaponov-Grekhov, A.V. and Nekorkin, V.I., Eds., Nizny Novgorod: Inst. Prikl. Fiz. Ross. Akad. Nauk, 2009, p. 143.Google Scholar
  18. 18.
    Dement’eva, S.O. and Mareev, E.A., Tezisy dokladov XXI Vserossiiskoi shkoly-konferentsii molodykh uchenykh “Sostav atmosfery. Atmosfernoe elektrichestvo. Klimaticheskie protsessy” (Proc. XXI All-Russian School-Conf. of Young Scientists “Composition of the Atmosphere. Atmospheric Electricity. Climatic Processes”, Borok, 2017), Yaroslavl: Filigran’, 2017, p. 68.Google Scholar
  19. 19.
    Arsenyev, S.A., Gubar, A.Yu., and Nikolaevskiy, V.N., Dokl. Earth Sci., 2004, vol. 396, no. 4, p. 588.Google Scholar
  20. 20.
    Arseniev, S.A. and Shelkovnikov, N.K., Moscow Univ. Phys. Bull., 2012, vol. 67, p. 290.ADSCrossRefGoogle Scholar
  21. 21.
    Politov, V.S., in Dinamika prostranstvennykh i neravnovesnykh techenii (Dynamics of Three-Dimensional and Nonequilibrium Flows), Chelyabinsk–Miass: Konstr. Byuro Im. Akad. V.P. Makeeva, 1992, p. 259.Google Scholar
  22. 22.
    Lewellen, W.S., Proc. Symp. on Tornadoes: Assessment of Knowledge and Implications for Man, Lubbock, 1976, p. 107.Google Scholar
  23. 23.
    Mazurov, M.E., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 1, p. 64.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mazurov, M.E., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 1, p. 73.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mazurov, M.E., Dokl. Math., 2012, vol. 85, no. 1, p. 149.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mazurov, M.E. and Kalyuzhnyi, I.M., Trudy III Mezhdunarodnoi konferentsii “Sistemnyi analiz i informatsionnye tekhnologii” (Proc. III Int. Conf. “Systems Analysis and Information Technologies”), Zvenigorod, 2009, p. 419.Google Scholar
  27. 27.
    Mazurov, M.E. and Kalyuzhnyi, I.M., Sbornik dokladov V Mezhdunarodnoi konferentsii “Matematicheskaya biologiya i bioinformatika” (Proc. V Int. Conf. “Mathematical Biology and Bioinformatics,” Pushchino, 2014), Moscow: MAKS Press, 2014, p. 49.Google Scholar
  28. 28.
    Mazurov, M.E. and Kalyuzhnyi, I.M., Moscow Univ. Phys. Bull., 2014, vol. 69, no. 3, p. 251.ADSCrossRefGoogle Scholar
  29. 29.
    Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, 1979.zbMATHGoogle Scholar
  30. 30.
    Kiknadze, G.I. and Krasnov, Yu.K., Dokl. Akad. Nauk, 1986, vol. 290, no. 6, p. 1315.Google Scholar
  31. 31.
    Kiknadze, G.I., Krasnov, Yu.K., Podymaka, N.F., and Khabenskii, V.B., Dokl. Akad. Nauk, 1986, vol. 291, no. 12, p. 1315.Google Scholar
  32. 32.
    FitzHugh, R.A., Biophys. J., 1961, vol. 1, p. 445.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Plekhanov Russian University of EconomicsMoscowRussia

Personalised recommendations