Advertisement

A Compact THz Source for Enhancing the Sensitivity of Nuclear Magnetic Resonance Spectroscopy with Dynamic Nuclear Polarization

  • V. L. Bratman
  • Yu. K. Kalynov
  • O. P. Kulagin
  • A. N. Leontyev
  • P. B. Makhalov
  • V. N. Manuilov
  • I. V Osharin
  • A. V. SavilovEmail author
  • A. E. Fedotov
  • A. P. Fokin
  • A. V. Chirkov
Article
  • 8 Downloads

Abstract

High-power terahertz radiation finds application in electron paramagnetic resonance spectroscopy and is used to enhance the sensitivity of nuclear magnetic resonance spectroscopy through dynamic nuclear polarization. The compact source of terahertz radiation proposed in this work follows the gyrotron scheme and relies on the proximity of the paramagnetic-resonance and cyclotron frequencies for electrons. However, the design of this terahertz source differs greatly from those of conventional gyrotrons. Simulations of its performance show that terahertz radiation with required parameters can be obtained with applied voltages below 2 kV. Experimental tests demonstrate that stimulated synchrontron radiation can indeed be generated at such nonrelativistic voltages.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation under grant 16-12-10445.

REFERENCES

  1. 1.
    Becerra, L.R., Gerfen, G.J., and Temkin, R.J., Phys. Rev. Lett., 1993, vol. 71, p. 3561.ADSCrossRefGoogle Scholar
  2. 2.
    Ardenkjaer-Larsen, J.-H., Boebinger, G.S., Comment, A., et al., Angew. Chem., Int. Ed., 2015, vol. 54, p. 9162.CrossRefGoogle Scholar
  3. 3.
    Maly, T., Debelouchina, G.T., Bajaj, V.S., et al., J. Chem. Phys., 2008, vol. 128, p. 052211.ADSCrossRefGoogle Scholar
  4. 4.
    Rosay, M., Blank, M., and Engelke, F., J. Magn. Reson., 2016, vol. 624, p. 88.ADSCrossRefGoogle Scholar
  5. 5.
    Matsuki, Y., Idehara, T., Fukazawa, J., et al., J. Magn. Reson., 2017, vol. 624, p. 107.Google Scholar
  6. 6.
    Prisner, T., Denisenkov, V., and Sezer, D., J. Magn. Reson., 2016, vol. 624, p. 68.ADSCrossRefGoogle Scholar
  7. 7.
    Bratman, V.L., Fedotov, A.E., Kalynov, Yu.K., et al., J. Infrared, Millimeter, Terahertz Waves, 2013, vol. 34, p. 837.CrossRefGoogle Scholar
  8. 8.
    Sirigiri, J.R. and Maly, T., US Patent 8786284, 2014.Google Scholar
  9. 9.
    Bratman, V.L., Kalynov, Yu.K., Makhalov, P.B., and Fedotov, A.E., Radiophys. Quantum Electron., 2014, vol. 56, p. 532.ADSCrossRefGoogle Scholar
  10. 10.
    Bratman, V.L., Fedotov, A.E., Kalynov, Yu.K., et al., IEEE Trans. Plasma Sci., 2017, vol. 45, p. 644.ADSCrossRefGoogle Scholar
  11. 11.
    Zapevalov, V.E., Kuftin, A.N., Manuilov, V.N., et al., Proc. 8th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications,” Nizhny Novgorod, 2011, p. 143.Google Scholar
  12. 12.
    Glyavin, M.Yu., Zavolskiy, N.A., Sedov, A.S., et al., Phys. Plasmas, 2013, vol. 20, p. 033103.ADSCrossRefGoogle Scholar
  13. 13.
    Hornstein, M.K., Bajaj, V.S., Griffin, R.G., et al., IEEE Trans. Plasma Sci., 2007, vol. 35, p. 27.ADSCrossRefGoogle Scholar
  14. 14.
    Kishko, S.A., Ponomarenko, S.S., Kuleshov, A.N., et al., IEEE Trans. Plasma Sci., 2013, vol. 41, p. 2475.ADSCrossRefGoogle Scholar
  15. 15.
    Glyavin, M.Yu., Denisov, G.G., Zapevalov, V.E., et al., Phys.-Usp., 2016, vol. 59, p. 595.ADSCrossRefGoogle Scholar
  16. 16.
    Glyavin, M.Yu., Chirkov, A.V., Denisov, G.G., et al., Rev. Sci. Instrum., 2015, vol. 86, p. 054705.ADSCrossRefGoogle Scholar
  17. 17.
    Bratman, V.L., Fedotov, A.E., Fokin, A.P., et al., Phys. Plasmas, 2017, vol. 24, p. 113 105.CrossRefGoogle Scholar
  18. 18.
    Ginzburg, N.S., Glyavin, M.Yu., Zotova, I.V., Zheleznov, I.V., and Fokin, A.P., Tech. Phys. Lett., 2017, vol. 43, p. 110.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. L. Bratman
    • 1
    • 2
  • Yu. K. Kalynov
    • 1
  • O. P. Kulagin
    • 1
  • A. N. Leontyev
    • 1
  • P. B. Makhalov
    • 1
  • V. N. Manuilov
    • 1
    • 3
  • I. V Osharin
    • 1
  • A. V. Savilov
    • 1
    Email author
  • A. E. Fedotov
    • 1
  • A. P. Fokin
    • 1
  • A. V. Chirkov
    • 1
  1. 1.Institute of Applied Physics, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Ariel UniversityArielIsrael
  3. 3.Nizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations