Advertisement

Terahertz Undulator Radiation of Stabilized Dense Electron Beams

  • I. V. Bandurkin
  • I. S. Kurakin
  • Yu. S. Oparina
  • A. V. SavilovEmail author
  • V. L. Bratman
  • N. Balal
  • Yu. Lurie
Article
  • 6 Downloads

Abstract

Dense short electron bunches produced by state-of-the-art photoinjector-based accelerators are used to create sources of powerful electromagnetic pulses of terahertz frequency range based on spontaneous coherent emission by these bunches. However, there is a problem of stabilizing the phase dimension of a bunch along the space of electron wave interaction. In this work, two means of such stabilization are considered that are based on using the intrinsic electromagnetic fields (quasi-static and radiation) of bunches.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project nos. 16-02-00794 and 18-32-00351; and by the Israeli Ministry of Science, Technology, and Space. A portion of this work was performed a part of a State Task for the Institute of Applied Physics, Russian Academy of Sciences, project no. 0035-2014-0012.

REFERENCES

  1. 1.
    Power, J.G., AIP Conf. Proc., 2010, vol. 1299, p. 20.ADSCrossRefGoogle Scholar
  2. 2.
    Bartnik, A., Gulliford, C., Bazarov, I., et al., Phys. Rev. Spec. Top.–Accel. Beams, 2015, vol. 18, p. 083401.ADSCrossRefGoogle Scholar
  3. 3.
    Stephan, F., Boulware, C.H., Krasilnikov, M., et al., Phys. Rev. Spec. Top.–Accel. Beams, 2010, vol. 13, p. 020704.ADSCrossRefGoogle Scholar
  4. 4.
    Rosenzweig, J.B., Valloni, A., Alesini, D., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2011, vol. 657, p. 107.Google Scholar
  5. 5.
    Quintero, K.J.P., Antipov, S., Sumant, A.V., et al., Appl. Phys. Lett., 2014, vol. 105, p. 123 103.CrossRefGoogle Scholar
  6. 6.
    Doria, A., Bartolini, R., Feinstein, J., et al., IEEE J. Quantum Electron., 1993, vol. 29, p. 1428.ADSCrossRefGoogle Scholar
  7. 7.
    Gover, A., Hartemann, F.V., Le Sage, G.P., et al., Phys. Rev. Lett., 1994, vol. 72, p. 1192.ADSCrossRefGoogle Scholar
  8. 8.
    Lurie, Y. and Pinhasi, Y., Phys. Rev. Spec. Top.–Accel. Beams, 2007, vol. 10, p. 080703.ADSCrossRefGoogle Scholar
  9. 9.
    Lurie, Y., Friedman, A., and Pinhasi, Y., Phys. Rev. Spec. Top.–Accel. Beams, 2015, vol. 18, p. 070701.ADSCrossRefGoogle Scholar
  10. 10.
    Bratman, V.L., Jaroszynsky, D.A., Samsonov, S.V., and Savilov, A.V., Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, vol. 475, p. 436.Google Scholar
  11. 11.
    Lee, K., Mun, J., Park, S.H., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2015, vol. 776, p. 27.Google Scholar
  12. 12.
    Balal, N., Bandurkin, I.V., Bratman, V.L., et al., Appl. Phys. Lett., 2015, vol. 107, p. 163 505.CrossRefGoogle Scholar
  13. 13.
    Lurie, Y., Bratman, V.L., and Savilov, A.V., Phys. Rev. Accel. Beams, 2016, vol. 19, p. 050704.ADSCrossRefGoogle Scholar
  14. 14.
    Ginzburg, N.S. and Peskov, N.Yu., Tech. Phys., 1988, vol. 58, p. 859.Google Scholar
  15. 15.
    Freund, H.P. and Antonsen, T.M., Principles of Free-Electron Lasers, London: Chapman and Hall, 1996.Google Scholar
  16. 16.
    Bandurkin, I.V., Kuzikov, S.V., and Savilov, A.V., Appl. Phys. Lett., 2014, vol. 105, p. 073503.ADSCrossRefGoogle Scholar
  17. 17.
    Nielsen, C. and Sessler, A., Rev. Sci. Instrum., 1959, vol. 30, p. 80.ADSCrossRefGoogle Scholar
  18. 18.
    Kolomensky, A.A. and Lebedev, A.N., At. Energy, 1959, vol. 7, p. 549.Google Scholar
  19. 19.
    Bondeson, A. and Antonsen, T.M., Int. J. Electron., 1986, vol. 61, p. 855.CrossRefGoogle Scholar
  20. 20.
    Bratman, V.L. and Savilov, A.V., Phys. Plasmas, 1995, vol. 2, p. 557.ADSCrossRefGoogle Scholar
  21. 21.
    Savilov, A.V., Phys. Plasmas, 1997, vol. 4, p. 2276.ADSCrossRefGoogle Scholar
  22. 22.
    Bratman, V.L., Dumbrajs, O., Nikkola, P., and Sa-vilov, A.V., IEEE Trans. Plasma Sci., 2000, vol. 28, p. 633.ADSCrossRefGoogle Scholar
  23. 23.
    Balal, N., Bandurkin, I.V., Bratman, V.L., and Fedotov, A.E., Phys. Rev. Accel. Beams, 2017, vol. 20, p. 122 401.CrossRefGoogle Scholar
  24. 24.
    Bandurkin, I.V., Kurakin, I.S., and Savilov, A.V., Phys. Rev. Accel. Beams, 2017, vol. 20, p. 020704.ADSCrossRefGoogle Scholar
  25. 25.
    Ginzburg, N.S., Malkin, A.M., and Sergeev, A.S., J. Exp. Theor. Phys., 2003, vol. 96, p. 904.ADSCrossRefGoogle Scholar
  26. 26.
    Curry, E., Fabbri, S., Musumeci, P., and Gover, A., New J. Phys., 2016, vol. 18, p. 113 045.CrossRefGoogle Scholar
  27. 27.
    Bandurkin, I.V., Oparina, Y.S., and Savilov, A.V., Appl. Phys. Lett., 2017, vol. 110, p. 263 508.CrossRefGoogle Scholar
  28. 28.
    Ginzburg, N.S., Zotova, I.V., and Sergeev, A.S., JETP Lett., 1994, vol. 60, p. 513.ADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • I. V. Bandurkin
    • 1
  • I. S. Kurakin
    • 1
  • Yu. S. Oparina
    • 1
  • A. V. Savilov
    • 1
    Email author
  • V. L. Bratman
    • 1
    • 2
  • N. Balal
    • 2
  • Yu. Lurie
    • 2
  1. 1.Institute of Applied Physics, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Ariel UniversityArielIsrael

Personalised recommendations