Advertisement

Physical Bases of a ToF Camera–Based Optical Tracking System for Surgical Instruments

  • M. N. MorozovEmail author
  • A. A. Shubin
  • K. M. Naidenov
  • A. A. Derbenev
Article
  • 4 Downloads

Abstract

The physical principles of the operation of time-of-flight (ToF) cameras used for forming three-dimensional images are considered. Estimates of ToF camera characteristics are obtained using the example of a Kinect device. Algorithms for processing of three-dimensional images in a system of intraoperative navigation are described. Estimates of the accuracy of identifying the position of a surgical instrument are obtained.

Notes

ACKNOWLEDGMENTS

This work was supported by the RF Ministry of Education and Science, project RFMEFI577170254 “An Intraoperational Navigation System for Minimally Invasive Surgery with the Support of Augmented Reality Technology Based on Virtual 3D Models of Organs, Obtained Using the Results from CT Diagnostics.”

REFERENCES

  1. 1.
    Benedek, C., Pattern Recognit. Lett., 2014, vol. 50, p. 149.CrossRefGoogle Scholar
  2. 2.
    Hansard, M., Lee, S., Choi, O., and Horaud, R., Time-of-Flight Cameras: Principles, Methods and Applications, London: Springer, 2012, p. 2.Google Scholar
  3. 3.
    Lefloch, D., Nair, R., Lenzen, F., et al., Lect. Notes Comput. Sci., 2003, vol. 8200, p. 3.CrossRefGoogle Scholar
  4. 4.
    Dal Mutto, C.D., Zanuttigh, P., and Cortelazzo, G.M., Time-of-Flight Cameras and Microsoft Kinect™, New York: Springer, 2013.Google Scholar
  5. 5.
    Guzhov, V.I., Metody izmereniya 3D-profilya ob’’ektov. Kontaktnye, triangulyatsionnye sistemy i metody strukturirovannogo osveshcheniya (Methods for Measurement of the 3D Profile of Objects. Contact and Triangulation Systems and Structured Lighting Methods), Novosibirsk: Novosib. Gos. Tekh. Univ., 2015.Google Scholar
  6. 6.
    Wasenmuller, O. and Stricker, D., Proc. ACCV 2016 Int. Workshops, Taipei, 2016, vol. 2, p. 34.Google Scholar
  7. 7.
    Oh, T., Park, P., Miller, C.A., Chan, A.K., et al., Neurosurg. Clin. North Am., 2018, vol. 29, p. 439.CrossRefGoogle Scholar
  8. 8.
    Sun, X., Image guided interaction in minimally invasive surgery, Master’s Thesis, Burnaby: Simon Fraser Univ., 2012.Google Scholar
  9. 9.
    Liao, H., Inomata, T., Sakuma, I., et al., IEEE Trans. Biomed. Eng., 2010, vol. 57, p. 1476.CrossRefGoogle Scholar
  10. 10.
    Crisan, N., Andras, I., and Coman, I., New Trends Med. Serv. Robots, 2018, vol. 48, p. 45.CrossRefGoogle Scholar
  11. 11.
    Fisher, R.B., Dawson-Howe, K., and O’Sullivan, C., Proc. Int. Symp. on Virtual and Augmented Architecture (Dublin, 2001), London: Springer, 2001, p. 69.Google Scholar
  12. 12.
    Zhang, Z., IEEE Trans. Pattern Anal. Mach. Intell., 2000, vol. 22, p. 1330.CrossRefGoogle Scholar
  13. 13.
    Wang, Z., Zhao, Y., and Shigang, W., Proc. SPIE, 2018, vol. 10 556, p. 8.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. N. Morozov
    • 1
    Email author
  • A. A. Shubin
    • 1
  • K. M. Naidenov
    • 1
  • A. A. Derbenev
    • 1
  1. 1.Volga State University of TechnologyYoshkar-OlaRussia

Personalised recommendations