X-Ray Image Analysis for the Neural Network-Based Detection of Pathology

  • R. Sh. MinyazevEmail author
  • A. A. Rumyantsev
  • S. A. Dyganov
  • A. A. Baev


A neural network-based way of analyzing X-ray images for detecting pathology in lung tissue is proposed. A software module is developed in the Python programming language using the TensorFlow library to produce a neural network. The performance of the neural network is analyzed.



This work was supported by the RF Ministry of Education and Science, project RFMEFI577170254 “An Intraoperational Navigation System for Minimally Invasive Surgery with the Support of Augmented Reality Technology Based on Virtual 3D Models of Organs, Obtained Using the Results from CT Diagnostics.”


  1. 1.
    Dyudin, M.V., Tomakova, R.A., and Tomakov, M.V., Biomed. Radioelektron., 2014, no. 9, p. 12.Google Scholar
  2. 2.
    Krizhevsky, A., Sutskever, I., and Hinton, G., Proc. 26th Annual Conf, on Neural Information Processing Systems, Lake Tahoe, 2012, p. 1090.Google Scholar
  3. 3.
    Kim, Y., Proc. Conf. on Empirical Methods In Natural Language Processing, Doha, 2014, p. 1746.Google Scholar
  4. 4.
    Ker, J., Wang, L., Rao, J., et al., IEEE Access, 2017, vol. 6, p. 9375.CrossRefGoogle Scholar
  5. 5.
    Szegedy, C., Liu, W., Jia, Y., et al., Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Boston, 2015, p. 2559.Google Scholar
  6. 6.
    Richert, W. and Coelho, L.P., Building Machine Learning Systems with Python, Packt, 2013.Google Scholar
  7. 7.
    He, K., Zhang, X., Ren, S., et al., Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, 2016, p. 770.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • R. Sh. Minyazev
    • 1
    Email author
  • A. A. Rumyantsev
    • 1
  • S. A. Dyganov
    • 1
  • A. A. Baev
    • 2
  1. 1.Kazan National Research Technical UniversityKazanRussia
  2. 2.Volga State University of TechnologyYoshkar-OlaRussia

Personalised recommendations