Advertisement

Two-Dimensional Dynamics of Solitons under the Conditions of Zakharov–Benney Resonance

  • S. V. SazonovEmail author
  • N. V. Ustinov
Article
  • 15 Downloads

Abstract

The generation of terahertz radiation by optical pulses under quasi-resonance conditions in a medium of asymmetric quantum particles is considered. A system of nonlinear wave equations describing this process is derived for a noncollinear geometry when the direction of the phase velocity of optical pulses does not coincide with that of the terahertz pulse radiation. Different types of solutions of the resulting system of equation are studied.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, grant no. 16-02–00453a.

REFERENCES

  1. 1.
    Kivshar’, Yu.S. and Agraval, G.P., Opticheskie solitony (Optical Solitons), Moscow: Fizmatlit, 2005.Google Scholar
  2. 2.
    Akhmanov, S.A., Vysloukh, V.A., and Chirkin, A.S., Optika femtosekundnykh lazernykh impul’sov (Optics of Femtosecond Laser Pulses), Moscow: Nauka, 1988.Google Scholar
  3. 3.
    Basharov, A.M. and Maimistov, A.I., Opt. Spectrosc., 2000, vol. 88, p. 380.ADSCrossRefGoogle Scholar
  4. 4.
    Zakharov, V.E., Manakov, S.V., Novikov, S.P., and Pitaevskii, L.P., Teoriya solitonov: Metod obratnoi zadachi (Soliton Theory: Inverse Problem Method), Moscow: Nauka, 1980.zbMATHGoogle Scholar
  5. 5.
    Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., and Morris, H.C., Solitons and Nonlinear Wave Equations, London: Academic, 1982.zbMATHGoogle Scholar
  6. 6.
    Faddeev, L.D., Phys.-Usp., 2013, vol. 56, p. 465.ADSCrossRefGoogle Scholar
  7. 7.
    Sazonov, S.V. and Sobolevskii, A.F., JETP Lett., 2002, vol. 75, no. 12, p. 621; Sazonov, S.V. and Sobolevskii, A.F., J. Exp. Theor. Phys., 2003, vol. 96, no. 6, p. 1019.ADSCrossRefGoogle Scholar
  8. 8.
    Sazonov, S.V. and Sobolevskii, A.F., Quantum Electron., 2005, vol. 35, no. 11, p. 1019.ADSCrossRefGoogle Scholar
  9. 9.
    Yadjima, N. and Oikawa, M., Prog. Theor. Phys., 1976, vol. 56, no. 6, p. 1719.ADSCrossRefGoogle Scholar
  10. 10.
    Sazonov, S.V. and Ustinov, N.V., JETP Lett., 2011, vol. 94, no. 8, p. 610.CrossRefGoogle Scholar
  11. 11.
    Sazonov, S.V. and Ustinov, N.V., J. Exp. Theor. Phys., 2012, vol. 115, no. 5, p. 741.ADSCrossRefGoogle Scholar
  12. 12.
    Ohta, Y., Maruno, K., and Oikawa, M., J. Phys. A, 2007, vol. 40, p. 7659.ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Radha, R., Kumar, C.S., Lakshmanan, M., and Gilson, C.R., J. Phys. A, 2009, vol. 42, p. 102002.ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kanna, T., Vijayajayanthi, M., Sakkaravarthi, K., and Lakshmanan, M., J. Phys. A, 2009, vol. 42, p. 115103.ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Matveev, V.B. and Salle, M.A., Darboux Transformations and Solitons, Springer, 1991.CrossRefzbMATHGoogle Scholar
  16. 16.
    Chen, J., Chen, Y., Feng, B.F., and Maruno, K.I., Phys. Lett. A, 2015, vol. 379, p. 1510.ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Faculty of Physics, Moscow State UniversityMoscowRussia

Personalised recommendations