Advertisement

Nonlinear Dynamics, Quasi-Periodic Summation, Self-Oscillating Processes, and Information Coding in Selective Spiking Neural Networks

  • M. E. MazurovEmail author
Article
  • 8 Downloads

Abstract

Nonlinear dynamics, physical processes, and information processing in selective spiking neurons are investigated. Summation of pulse inputs are considered on the basis of the theory of quasi-periodic functions and nonlinear transformation via relaxation of the self-oscillating system of a neuron. A way of encoding input information is also considered in which the information unit is a pulse sequence, and the intensity of the input signal is encoded by a synchronous change in the frequency of the pulse sequences.

Notes

REFERENCES

  1. 1.
    Aleksandrov, Yu.I., Anokhin, K.V., Sokolov, E.N., et al., Neiron. Obrabotka signalov. Plastichnost’. Modelirovanie. Fundamental’noe rukovodstvo (Neuron. Signal Processing. Plasticity. Modeling. Comprehensive Guide), Tyumen: Tyumen. Gos. Univ., 2008.Google Scholar
  2. 2.
    Borisyuk, G.N., Borisyuk, R.M., Kazanovich, Ya.B., and Ivanitskii, G.R., Phys.-Usp., 2002, vol. 45, p. 1073.ADSCrossRefGoogle Scholar
  3. 3.
    Hodgkin, A.L. and Huxley, A.F., J. Physiol., 1952, vol. 117, no. 4, p. 500.CrossRefGoogle Scholar
  4. 4.
    Mazurov, M.E., Bull. Russ. Acad. Sci.: Phys., 2018, vol. 82, no. 1, p. 73.CrossRefGoogle Scholar
  5. 5.
    Mazurov, M.E., Trudy VI mezhdunarodnoi konferentsii “Matematicheskaya biologiya i bioinformatika” (Proc. VI Int. Conf. “Mathematical Biology and Bioinformatics”), Pushchino, 2016, p. 82.Google Scholar
  6. 6.
    Mazurov, M.E., RF Patent 2598298 (2015).Google Scholar
  7. 7.
    Mazurov, M.E., RF Patent 2597495 (2014).Google Scholar
  8. 8.
    Mazurov, M.E., RF Patent 2597497 (2015).Google Scholar
  9. 9.
    Mazurov, M.E., RF Patent 2597496 (2015).Google Scholar
  10. 10.
    Levitan, B.M., Pochti-periodicheskie funktsii (Almost Periodic Functions), Moscow: Gostekhizdat, 1953.zbMATHGoogle Scholar
  11. 11.
    Fitzhugh, R., Biophys. J., 1961, vol. 1, no. 6, p. 445.ADSCrossRefGoogle Scholar
  12. 12.
    Melamed, O., Gerstner, W., Maass, W., et al., Trends Neurosci., 2004, vol. 27, no. 1, p. 11.CrossRefGoogle Scholar
  13. 13.
    Izhikevich, E.M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, London: MIT Press, 2007.Google Scholar
  14. 14.
    Grechenko, T.N., Psikhofiziologiya (Psychophysiology), Moscow: Gardariki, 2009.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Plekhanov University of EconomicsMoscowRussia

Personalised recommendations